满分5 > 初中数学试题 >

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α...

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
manfen5.com 满分网
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
(1)根据旋转的性质得到对应边相等和对应角相等,从而得到全等三角形,根据全等三角形的性质进行证明; (2)在(1)的基础上,易发现该四边形的四条边相等,从而证明是菱形; (3)根据菱形的性质和解直角三角形的知识以及等腰三角形的性质求解. 【解析】 (1)EA1=FC. 证明:(证法一)∵AB=BC, ∴∠A=∠C. 由旋转可知,AB=BC1,∠A=∠C1,∠ABE=∠C1BF, ∴△ABE≌△C1BF. ∴BE=BF,又∵BA1=BC, ∴BA1-BE=BC-BF.即EA1=FC. (证法二)∵AB=BC,∴∠A=∠C. 由旋转可知,∠A1=∠C,A1B=CB,而∠EBC=∠FBA1, ∴△A1BF≌△CBE. ∴BE=BF,∴BA1-BE=BC-BF, 即EA1=FC. (2)四边形BC1DA是菱形. 证明:∵∠A1=∠ABA1=30°, ∴A1C1∥AB,同理AC∥BC1. ∴四边形BC1DA是平行四边形. 又∵AB=BC1, ∴四边形BC1DA是菱形. (3)(解法一)过点E作EG⊥AB于点G,则AG=BG=1. 在Rt△AEG中,AE=. 由(2)知四边形BC1DA是菱形, ∴AD=AB=2, ∴ED=AD-AE=2-. (解法二)∵∠ABC=120°,∠ABE=30°,∴∠EBC=90°. 在Rt△EBC中,BE=BC•tanC=2×tan30°=. ∴EA1=BA1-BE=2-. ∵A1C1∥AB, ∴∠A1DE=∠A. ∴∠A1DE=∠A1. ∴ED=EA1=2-.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,⊙O的直径AB=4,∠ABC=30°,BC=manfen5.com 满分网,D是线段BC的中点.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.
查看答案
某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:
(1)这次共抽调了多少人?
(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?
(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?

manfen5.com 满分网 查看答案
在△ABC中,BC=a,BC边上的高h=2a,沿图中线段DE、CF将△ABC剪开,分成的三块图形恰能拼成正方形CFHG,如图1所示.
请你解决如下问题:
已知:如图2,在△A′B′C′中,B′C′=a,B′C′边上的高h=manfen5.com 满分网a.请你设计两种不同的分割方法,将△A′B′C′沿分割线剪开后,所得的三块图形恰能拼成一个正方形,请在图2、图3中,画出分割线及拼接后的图形.
manfen5.com 满分网
查看答案
已知如图,点A(m,3)与点B(n,2)关于直线y=x对称,且都在反比例函数y=manfen5.com 满分网的图象上,点D的坐标为(0,-2).
(1)求反比例函数的解析式;
(2)若过B,D的直线与x轴交于点C,求sin∠DCO的值.

manfen5.com 满分网 查看答案
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧manfen5.com 满分网上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
①求∠ACB的度数为   
②记△ABC的面积为S,若manfen5.com 满分网=4manfen5.com 满分网,则⊙D的半径为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.