满分5 > 初中数学试题 >

已知:如图,二次函数图象的顶点坐标为C(1,-2),直线y=kx+m的图象与该二...

已知:如图,二次函数图象的顶点坐标为C(1,-2),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(3,0),B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这个二次函数的图象交于点E.
(1)求这个二次函数的解析式;
(2)设点P的横坐标为x,求线段PE的长(用含x 的代数式表示);
(3)点D为直线AB与这个二次函数图象对称轴的交点,若以点P、E、D为顶点的三角形与△AOB相似,请求出P点的坐标.

manfen5.com 满分网
(1)首先设二次函数的解析式为y=a(x-1)2-2,由A点坐标为(3,0),则可将A点的坐标代入函数解析式,利用待定系数法即可求得这个二次函数的解析式; (2)首先利用待定系数法求得直线AB的解析式,然后由P在直线上,将x代入直线方程,即可求得P的纵坐标,又由E在抛物线上,则可求得E的纵坐标,它们的差即为PE的长; (3)分别从当∠EDP=90°时,△AOB∽△EDP与当∠DEP=90°时,△AOB∽△DEP两种情况去分析,注意利用相似三角形的对应边成比例等性质,即可求得答案,注意不要漏解. 【解析】 (1)设二次函数的解析式为y=a(x-1)2-2, ∵A(3,0)在抛物线上, ∴0=a(3-1)2-2 ∴a=, ∴y=(x-1)2-2, (2)抛物线与y轴交点B的坐标为(0,), 设直线AB的解析式为y=kx+m, ∴, ∴, ∴直线AB的解析式为y=x-. ∵P为线段AB上的一个动点, ∴P点坐标为(x,x-).(0<x<3) 由题意可知PE∥y轴,∴E点坐标为(x,x2-x-), ∵0<x<3, ∴PE=(x-)-(x2-x-)=-x2+x, (3)由题意可知D点横坐标为x=1,又D点在直线AB上, ∴D点坐标(1,-1). ①当∠EDP=90°时,△AOB∽△EDP, ∴. 过点D作DQ⊥PE于Q, ∴xQ=xP=x,yQ=-1, ∴△DQP∽△AOB∽△EDP, ∴, 又OA=3,OB=,AB=, 又DQ=x-1, ∴DP=(x-1), ∴, 解得:x=-1±(负值舍去). ∴P(-1,)(如图中的P1点); ②当∠DEP=90°时,△AOB∽△DEP, ∴. 由(2)PE=-x2+x,DE=x-1, ∴, 解得:x=1±,(负值舍去). ∴P(1+,-1)(如图中的P2点); 综上所述,P点坐标为(-1,)或(1+,-1).
复制答案
考点分析:
相关试题推荐
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;
(3)求使用回收净化设备后两年的利润总和.
查看答案
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
manfen5.com 满分网
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
查看答案
manfen5.com 满分网如图,⊙O的直径AB=4,∠ABC=30°,BC=manfen5.com 满分网,D是线段BC的中点.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.
查看答案
某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:
(1)这次共抽调了多少人?
(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?
(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?

manfen5.com 满分网 查看答案
在△ABC中,BC=a,BC边上的高h=2a,沿图中线段DE、CF将△ABC剪开,分成的三块图形恰能拼成正方形CFHG,如图1所示.
请你解决如下问题:
已知:如图2,在△A′B′C′中,B′C′=a,B′C′边上的高h=manfen5.com 满分网a.请你设计两种不同的分割方法,将△A′B′C′沿分割线剪开后,所得的三块图形恰能拼成一个正方形,请在图2、图3中,画出分割线及拼接后的图形.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.