通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边/腰=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=______.
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______.
(3)如图②,已知sinA=
,其中∠A为锐角,试求sadA的值.
考点分析:
相关试题推荐
某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.
(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?
(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的
,但又不少于B种笔记本数量的
,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.
①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
②请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?
查看答案
如图,以AB为直径的⊙O经过点C,D是AB延长线上一点,且DC=AC,∠CAB=30°.
(1)试判断CD所在的直线与⊙O的位置关系,并说明理由;
(2)若AB=2,求阴影部分的面积.
查看答案
永安市2012年初中毕业升学体育考试每位考生需考三项:50米跑为必考项目,另从立定跳远、实心球、1分钟跳绳和1分钟仰卧起坐中任选两项考试.每位考生可以根据自身条件选择不同的考试方案,如小敏选择的方案是:50米跑--立定跳远--1分钟跳绳.
(1)每位考生有______种选择方案;
(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.
(友情提醒:各种方案用a,b,c…或①、②、③、…等符号来代表可简化解答过程).
(3)将三项考试成绩转化成等级成绩后,某校今年体育考试成绩的统计图如图所示,则该校学生体育考试成绩的中位数在______级内.
查看答案
如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
(1)求证:DB=CF;
(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.
查看答案
(1)先化简,再求值:(a-2)(a+2)-a(a-2),其中a=-1.
(2)解方程:
查看答案