已知抛物线y=x
2+(2n-1)x+n
2-1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.
考点分析:
相关试题推荐
在平面直角坐标系中,小方格都是边长为1的正方形,图①、②、③、④的形状和大小均相同.请你解答下列问题(根据变换需要可适当标上字母):
(1)写出图①中点A关于原点对称的点的坐标;
(2)指出图②通过怎样的变换可与图①重合,图④通过怎样的变换可与图③拼成一个矩形;
(3)请将图形①、②、③、④四部分密铺到图⑤中,在图⑤中画出图形,并将其中两块涂上阴影.
查看答案
在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为l.
(1)填表:
三边a、b、c | a+b-c | |
3、4、5 | 2 | |
5、12、13 | 4 | |
8、15、17 | 6 | |
(2)如果a+b-c=m,观察上表猜想:
=______,(用含有m的代数式表示);
(3)说出(2)中结论成立的理由.
查看答案
桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.
(1)请用列表或画树状图的方法求两数和为5的概率;
(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,这个游戏对双方公平吗?
查看答案
工商银行为改进在上下班高峰的服务水平,随机抽样调查了部分该行顾客在上下班高峰时从开始排队到办理业务所用的时间t(单位:分).下面是这次调查统计分析得到的频数分布表和频数分布直方图.
分组 | 频数 | 频率 |
一组 | 0<t≤5 | 10 | 0.1 |
二组 | 5<t≤10 | | 0.3 |
三组 | 10<t≤15 | 25 | 0.25 |
四组 | 15<t≤20 | 20 | |
五组 | 20<t≤25 | 15 | 0.15 |
合计 | | 1.00 |
(1)在上表中填写所缺数据
(2)补全频数分布直方图.
(3)据调查顾客对服务质量的满意程度与所用时间t的关系如下:
所用时间t | 顾客满意程度 |
0<t≤10 | 比较满意 |
10<t≤15 | 基本满意 |
t>15 | 比较差 |
请结合频数分布表和频数分布直方图回答:本次调查中,处于中位数的顾客对服务质量的满意程度为______,顾客从开始排队到办理业务所用的时间平均为______分钟,用以上调查结果来判断工商银行全天的服务水平合理吗?为什么?______
______.
查看答案
如图,AB是⊙O的直径,P是AB延长线上一点,PD切⊙O于点C,BC与AD的延长线相交于E,且AD⊥
PD,垂足为D.
(1)求证:AB=AE;
(2)若△ABE是等边三角形,求AB:BP的值.
查看答案