满分5 > 初中数学试题 >

如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点...

如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的⊙Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两点.
(1)当点A的坐标为(manfen5.com 满分网,p)时,
①填空:p=______,m=______
(1)①由点A(,p)在直线l上,得到p=1;点A在直线y=mx上,得到m=;在Rt△OBA中,OB=1,AB=,OA=,得到∠AOE=60°; ②连接TM,ME,EN,ON,根据切线的性质得到QE⊥x轴,QT⊥OT,由QE⊥MN,得到MF=NF,而r=2,EF=1,则四边形QNEM为平行四边形,即QN∥ME;同时有△QEN为等边三角形,则∠NQE=60°,∠QNF=30°;在四边形OEQT中,∠QTO=∠QEO=90°,∠TOE=60°,可求出∠TQE=120°,于是有∠TQE+∠NQE=120°+60°=180°,即T、Q、N三点共线,得到TN为直径;得到∠TMN=90°,得到TN∥ME,所以∠MTN=60°=∠TNE,得到以T、M、E、N为顶点的四边形是等腰梯形; (2)连DM,ME,根据垂径定理和圆周定理的推论得到∠DME=90°,DM垂直平分MN,所以Rt△MFD∽Rt△EFM,得到MF2=EF•FD,设D(h,k),(h>0,k=2r),则过M、D、N三点的抛物线的解析式为:y=a(x-h)2+k,令y=1,得到x1=h-,x2=h+,则MF=MN=,得到()2=1•(k-1),解得a=-1. 【解析】 (1)①∵点A的坐标为(,p),点A在直线l上, ∴p=1,即点A坐标为(,1); 而点A在直线y=mx上, ∴1=m,解得m=; 在Rt△OBA中,OB=1,AB=, ∴OA=, ∴∠AOB=30°, ∴∠AOE=60°. 故答案为1,,60°; ②连接TM,ME,EN,如图, ∵OE和OT是⊙Q的切线, ∴QE⊥x轴,QT⊥OT,即∠QTA=90°, 而l∥x轴, ∴QE⊥MN, ∴MF=NF, 又∵当r=2,EF=1, ∴QF=2-1=1, ∴四边形QNEM为平行四边形,即QN∥ME, ∴NQ=NE,即△QEN为等边三角形, ∴∠NQE=60°,∠QNF=30°, 在四边形OEQT中,∠QTO=∠QEO=90°,∠TOE=60°, ∴∠TQE=360°-90°-90°-60°=120°, ∴∠TQE+∠NQE=120°+60°=180°, ∴T、Q、N三点共线,即TN为直径, ∴∠TMN=90°, ∴TN∥ME, ∴∠MTN=60°=∠TNE, ∴以T、M、E、N为顶点的四边形是等腰梯形; (2)对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值不会变化.理由如下: 连DM,ME,如图, ∵DE为直径, ∴∠DME=90°, 而DE垂直平分MN, ∴Rt△MFD∽Rt△EFM, ∴MF2=EF•FD, 设D(h,k),(h>0,k=2r),则过M、D、N三点的抛物线的解析式为:y=a(x-h)2+k, 又∵M、N的纵坐标都为1, 当y=1,a(x-h)2+k=1,解得x1=h-,x2=h+, ∴MN=2, ∴MF=MN=, ∴()2=1•(k-1), ∵k>1, ∴=k-1, ∴a=-1.
复制答案
考点分析:
相关试题推荐
我们知道,二次函数y=ax2的图象进行向右或向左平移一次,再向上或向下平移一次可以得到y=a(x+m)2+k的图象.实际上,我们学过的反比例函数同样可以找到平移规律.
(1)请直接写出函数y=2x2向右平移3个单位,再向上平移1个单位的函数解析式______
(2)现在探究反比例函数的平移.探究一:把反比例函数manfen5.com 满分网的图象向右平移3个单位,请你至少在图象上取4个不同的点,分别找出平移后的点,通过对这些点的观察、探究、猜想,写出平移后的函数解析式.(写出求解过程)
(3)探究二:一般地,函数manfen5.com 满分网的图象可由哪个反比例函数的图象经过怎样的平移变换得到?

manfen5.com 满分网 查看答案
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.
(1)求证:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半径.

manfen5.com 满分网 查看答案
在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
manfen5.com 满分网manfen5.com 满分网
(1)图1中“统计与概率”所在扇形的圆心角为______度;
(2)图2、3中的a=______,b=______
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
查看答案
图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
(1)求AB的长(精确到0.01米);
(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.