首先连接AD,由△ABC中,AB=AC=13,BC=10,D为BC中点,利用等腰三角形的三线合一的性质,即可证得:AD⊥BC,然后利用勾股定理,即可求得AD的长,又由DE⊥AB,利用有两角对应相等的三角形相似,可证得△BED∽△BDA,继而利用相似三角形的对应边成比例,即可求得DE的长.
【解析】
连接AD,
∵△ABC中,AB=AC=13,BC=10,D为BC中点,
∴AD⊥BC,BD=BC=5,
∴AD==12,
∵DE⊥AB,
∴∠BED=∠BDA=90°,
∵∠B是公共角,
∴△BED∽△BDA,
∴,
即,
解得:DE=.
故答案为:.