满分5 > 初中数学试题 >

已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,...

已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.

manfen5.com 满分网
(1)连接OE.欲证直线EF是⊙O的切线,只需证明EF⊥AC.利用等边三角形的三个内角都是60°、等腰三角形OBE以及三角形的内角和定理求得同位角∠BOE=∠A=60°,从而判定OE∥AC,所以由已知条件EF⊥AC判定OE⊥EF,即直线EF是⊙O的切线; (2)连接DF.设⊙O的半径是r.由等边三角形的三个内角都是60°、三条边都相等、以及在直角三角形中30°所对的直角边是斜边的一半求得关于r的方程4-r=2(4r-4),解方程即可. (1)证明:连接OE. ∵△ABC是等边三角形, ∴∠A=∠B=∠C=60°; 在△BOE中,OB=OE,∠B=60°, ∴∠B=∠OEB=∠BOE=60°, ∴∠BOE=∠A=60°, ∴OE∥AC(同位角相等,两直线平行); ∵EF⊥AC, ∴OE⊥EF,即直线EF是⊙O的切线; (2)【解析】 连接DF. ∵DF与⊙O相切, ∴∠ADF=90°. 设⊙O的半径是r,则EB=r,EC=4-r,AD=4-2r. 在Rt△ADF中,∠A=60°, ∴AF=2AD=8-4r. ∴FC=4r-4; 在Rt△CEF中,∵∠C=60°,∴EC=2FC, ∴4-r=2(4r-4), 解得,r=; ∴⊙O的半径是.
复制答案
考点分析:
相关试题推荐
如图,某居民住宅阳台的宽AB为manfen5.com 满分网米,在朝向阳光的方向有一玻璃窗CD与地面垂直,该玻璃窗的下端C与地面距离AC=1.5米,上端D与地面距离AD=3.5米,紧靠墙壁的花架上有一盆花(花盆及花的大小忽略不计),记为点P,与地面距离PB=0.5米.如果太阳光线的角度合适,就可以照射到花盆上.
(1)求清晨第一缕照射到花上的太阳光线CP与地面的夹角α的度数;
(2)已知太阳光线与地面的夹角在正午前大约每小时增大15°,在正午后大约每小时减小15°,而这盆花每天需阳光照射3小时才能正常生长.问:如果不移动这盆花的位置,它能否正常生长?请说明理由.

manfen5.com 满分网 查看答案
列方程或方程组解应用题:
某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:
信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;
信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.
根据以上信息,原来报名参加的学生有多少人?
查看答案
去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井大的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?
查看答案
小明和小亮两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们实验的结果如下:
朝上的点数123456
出现的次数79682010
(1)请计算“3点朝上”的频率和“5点朝上”的频率.
(2)一位同学说:“根据实验,一次实验中出现5点朝上的概率最大”.这位同学的说法正确吗?为什么?
(3)小明和小亮各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
查看答案
如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.