满分5 > 初中数学试题 >

如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在...

如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,△APQ与△AOB相似?
(3)当t为何值时,△APQ的面积为manfen5.com 满分网个平方单位?

manfen5.com 满分网
(1)设直线AB的解析式为y=kx+b,解得k,b即可; (2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t. (3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10-2t)•=8-t,再利用三角形面积解得t即可. 【解析】 (1)设直线AB的解析式为y=kx+b, 由题意,得, 解得, 所以,直线AB的解析式为y=-x+6; (2)由AO=6,BO=8得AB=10, 所以AP=t,AQ=10-2t, ①当∠APQ=∠AOB时,△APQ∽△AOB. 所以=, 解得t=(秒), ②当∠AQP=∠AOB时,△AQP∽△AOB. 所以=, 解得t=(秒); ∴当t为秒或秒时,△APQ与△AOB相似; (3)过点Q作QE垂直AO于点E. 在Rt△AOB中,sin∠BAO==, 在Rt△AEQ中,QE=AQ•sin∠BAO=(10-2t)•=8-t, S△APQ=AP•QE=t•(8-t), =-t2+4t=, 解得t=2(秒)或t=3(秒). ∴当t为2秒或3秒时,△APQ的面积为个平方单位
复制答案
考点分析:
相关试题推荐
荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.
(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
查看答案
如图,点P是正方形ABCD的对角线上一点,PE⊥AB,PF⊥BC,垂足分别为E、F.
(1)求证:PD=EF;
(2)猜想PD与EF的位置关系,不必说明理由.
(3)设正方形的边长为4,点P在AC上移动(点P不与A、C重合),AP的长为x,△PEF的面积为S,试写出S与x之间的函数关系式,并写出自变量x的取值范围.

manfen5.com 满分网 查看答案
EQ在边长为1的正方形网格中,有形如帆船的图案①和半径为2的⊙P.
(1)将图案①进行平移,使A点平移到点E,画出平移后的图案;
(2)以点M为位似中心,在网格中将图案①放大2倍,画出放大后的图案,并在放大后的图案中标出线段AB的对应线段CD;
(3)在(2)所画的图案中,线段CD被⊙P所截得的弦长为______
查看答案
如图,在海岸边有一港口O.已知:小岛A在港口O北偏东30°的方向,小岛B在小岛A正南方向,OA=60海里,OB=20manfen5.com 满分网海里.计算:
(1)小岛B在港口O的什么方向;
(2)求两小岛A,B的距离.

manfen5.com 满分网 查看答案
今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动.九年级一班高伟同学统计了这天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下条形图和扇形统计图.请根据高伟同学所作的两个图形,解答:
(Ⅰ)九年级一班有多少名学生?
(Ⅱ)补全条形图的空缺部分.
(Ⅲ)在扇形统计图中计算社区文艺演出部分所对的圆心角度数.
(Ⅳ)若九年级有800名学生,估计该年级去敬老院的人数.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.