满分5 > 初中数学试题 >

如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连...

如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:
①△AED≌△DFB;②S四边形BCDG=manfen5.com 满分网CG2;③若AF=2DF,则BG=6GF.
其中正确的结论( )
manfen5.com 满分网
A.只有①②
B.只有①③
C.只有②③
D.①②③
①易证△ABD为等边三角形,根据“SAS”证明△AED≌△DFB; ②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积. ③过点F作FP∥AE于P点. 根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF. 【解析】 ①∵ABCD为菱形,∴AB=AD. ∵AB=BD,∴△ABD为等边三角形. ∴∠A=∠BDF=60°. 又∵AE=DF,AD=BD, ∴△AED≌△DFB; ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD, 即∠BGD+∠BCD=180°, ∴点B、C、D、G四点共圆, ∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.    ∴∠BGC=∠DGC=60°. 过点C作CM⊥GB于M,CN⊥GD于N. ∴CM=CN, 则△CBM≌△CDN,(HL) ∴S四边形BCDG=S四边形CMGN. S四边形CMGN=2S△CMG, ∵∠CGM=60°, ∴GM=CG,CM=CG, ∴S四边形CMGN=2S△CMG=2××CG×CG=CG2. ③过点F作FP∥AE于P点.                   ∵AF=2FD, ∴FP:AE=DF:DA=1:3, ∵AE=DF,AB=AD, ∴BE=2AE, ∴FP:BE=1:6=FG:BG, 即 BG=6GF. 故选D.
复制答案
考点分析:
相关试题推荐
已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( )
A.1个
B.2个
C.3个
D.4个
查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:①b<0;②c>0;③b2-4ac>0;④a-b+c<0,其中正确的个数有( )
manfen5.com 满分网
A.1个
B.2个
C.3个
D.4个
查看答案
下列不等式变形正确的是( )
A.由a>b,得ac>bc
B.由a>b,得-2a<-2b
C.由a>b,得-a>-b
D.由a>b,得a-2<b-2
查看答案
如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
manfen5.com 满分网
A.30°
B.25°
C.20°
D.15°
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.