满分5 > 初中数学试题 >

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交...

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)

manfen5.com 满分网
(1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切. (2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者. (3)根据大圆的面积减去小圆的面积即可得到圆环的面积. 【解析】 (1)BC所在直线与小圆相切. 理由如下: 过圆心O作OE⊥BC,垂足为E; ∵AC是小圆的切线,AB经过圆心O, ∴OA⊥AC; 又∵CO平分∠ACB,OE⊥BC, ∴OE=OA, ∴BC所在直线是小圆的切线. (2)AC+AD=BC. 理由如下: 连接OD. ∵AC切小圆O于点A,BC切小圆O于点E, ∴CE=CA; ∵在Rt△OAD与Rt△OEB中,, ∴Rt△OAD≌Rt△OEB(HL), ∴EB=AD; ∵BC=CE+EB, ∴BC=AC+AD. (3)∵∠BAC=90°,AB=8cm,BC=10cm, ∴AC=6cm; ∵BC=AC+AD, ∴AD=BC-AC=4cm, ∵圆环的面积为:S=π(OD)2-π(OA)2=π(OD2-OA2), 又∵OD2-OA2=AD2, ∴S=42π=16π(cm2).
复制答案
考点分析:
相关试题推荐
某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数分布表:
类别频数(人数)频率
文学m0.42
艺术220.11
科普66n
其他28
合计1
(1)表中m=______,n=______
(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?
(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人?
查看答案
解方程:manfen5.com 满分网
查看答案
计算:manfen5.com 满分网
查看答案
manfen5.com 满分网如图,在平面直角坐标系中有一正方形AOBC,反比例函数manfen5.com 满分网经过正方形AOBC对角线的交点,半径为(4-2manfen5.com 满分网)的圆内切于△ABC,则k的值为    查看答案
填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.