某校决定购买一些跳绳和排球.需要的跳绳数量是排球数量的3倍,购买的总费用不低干2200元,但不高于2500元
(1)商场内跳绳的售价20元/根,排球的售价为50元/个,设购买跳绳的数量为x,按照学校所定的费用,有几种购买方案?每种方案中跳绳和排球数量各为多少?
(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?
(3)由于购买数量较多,该商规定20元/根跳绳可打九折,50元/个的排球可打八折,用(2)中的最少费用最多还可以多买多少跳绳和排球?
考点分析:
相关试题推荐
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.
查看答案
“五•一”假期,梅河公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图.根据统计图回答下列问题:
(1)前往A地的车票有______张,前往C地的车票占全部车票的______%;
(2)若公司决定采用随机抽取的方式把车票分配给100名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为______;
(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
查看答案
如图,▱ABCD的两条对角线AC、BD相交于点O,AB=
,AO=3,BO=1.
(1)求证:AC⊥BD;
(2)求▱ABCD的周长.
查看答案
(1)先化简,再求值:(a+b)
2-2a(a+b),其中a=
,b=
;
(2)解分式方程:
=
-3.
查看答案
世界上著名的莱布尼茨三角形如图所示:则排在第10行从左边数第3个位置上的数是
.
查看答案