满分5 > 初中数学试题 >

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:...

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.
(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);
manfen5.com 满分网manfen5.com 满分网
(2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数;
(3)如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长.
manfen5.com 满分网
(1)以线段AB为直径的圆与线段CD的交点,或线段CD的中点; (2)利用(1)中图形得出C,D,E,F即可得出答案; (3)求出MN的长度,根据勾股数的特点得出符合要求的点. 【解析】 (1)尺规作图正确(以线段AB为直径的圆与线段CD的交点,或线段CD的中点) (2))∵矩形ABCD中,AB=3,BC=1时, ∴以线段AB为直径的圆与线段CD的交点有两个,加上C、D两点,总共四个点4个; (3)如图,∵矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5. 过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上, ∴ME=4,NE=3, ∴MN=5, PM=4,PH=2时,HM=2构成勾股数, 同理可得: PH″=或PH=2或PH′=3.
复制答案
考点分析:
相关试题推荐
如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
(1)请你帮小萍求出x的值.
(2)参考小萍的思路,探究并解答新问题:
如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)
manfen5.com 满分网
查看答案
如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.
(1)请在图2中,计算裁剪的角度∠BAD;
(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.
manfen5.com 满分网
查看答案
解方程:manfen5.com 满分网
查看答案
计算:(-1)2010-|-7|+manfen5.com 满分网×(manfen5.com 满分网-π)+(manfen5.com 满分网-1
查看答案
如图,点P在双曲线y=manfen5.com 满分网上,以P为圆心的⊙P与两坐标轴都相切,E为y轴负半轴上的一点,PF⊥PE交x轴于点F,则OF-OE的值是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.