满分5 > 初中数学试题 >

某课题研究小组就图形面积问题进行专题研究,他们发现如下结论: (1)有一条边对应...

某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:
(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;
(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)
manfen5.com 满分网
问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知manfen5.com 满分网=manfen5.com 满分网S△ABC,请证明.
问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究manfen5.com 满分网与S四边形ABCD之间的数量关系.
问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求manfen5.com 满分网
问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.
问题1,图1中,连接P1R2,R2B,由三角形中线的性质得S△AP1R1=S△P1R1R2,S△P1R2P2=S△P2R2B,再由R1,R2为AC的三等分点,得S△BCR2=S△ABR2,根据图形的面积关系,得S△ABC与S四边形P1P2R2R1的数量关系,证明结论; 问题2,图2中,连接AQ1,Q1P2,P2C,由三角形的中线性质,得S△AQ1P1=S△P1Q1P2,S△P2Q1Q2=S△P2Q2C,由Q1,P2为CD,AB的三等分点可知,S△ADQ1=S△AQ1C,S△BCP2=S△AP2C,得出S△ADQ1+S△BCP2与S四边形AQ1CP2的关系,再根据图形的面积关系,得S四边形ABCD与S四边形P1Q1Q2P2的等量关系; 问题3,图3中,依次设四边形的面积为S1,S2,S3,S4,S5,由问题2的结论可推出2S2=S1+S3,2S3=S2+S4,2S4=S3+S5,三式相加,得S2+S4=S1+S5,利用换元法求S1+S2+S3+S4+S5与S3的数量关系,已知S四边形ABCD=1,可求S四边形P2Q2Q3P3; 问题4,图4中,由问题2的结论可知,2S2=S1+S3,2S3=S2+S4,两式相加得S1,S2,S3,S4的等量关系. 【解析】 问题1,证明: 如图1,连接P1R2,R2B,在△AP1R2中,∵P1R1为中线,∴S△AP1R1=S△P1R1R2, 同理S△P1R2P2=S△P2R2B, ∴S△P1R1R2+S△P1R2P2=S△ABR2=S四边形P1P2R2R1, 由R1,R2为AC的三等分点可知,S△BCR2=S△ABR2, ∴S△ABC=S△BCR2+S△ABR2=S四边形P1P2R2R1+2S四边形P1P2R2R1=3S四边形P1P2R2R1, ∴S四边形P1P2R2R1=S△ABC; 问题2,S四边形ABCD=3S四边形P1Q1Q2P2. 理由:如图2,连接AQ1,Q1P2,P2C,在△AQ1P2中,∵Q1P1为中线, ∴S△AQ1P1=S△P1Q1P2,同理S△P2Q1Q2=S△P2Q2C, ∴S△P1Q1P2+S△P2Q1Q2=S四边形AQ1CP2=S四边形P1Q1Q2P2, 由Q1,P2为CD,AB的三等分点可知,S△ADQ1=S△AQ1C,S△BCP2=S△AP2C, ∴S△ADQ1+S△BCP2=(S△AQ1C+S△AP2C)=S四边形AQ1CP2, ∴S四边形ABCD=S△ADC+S△ABC=S四边形AQ1CP2+S△ADQ1+S△BCP2=3S四边形P1Q1Q2P2, 即S四边形ABCD=3S四边形P1Q1Q2P2; 问题3,【解析】 如图3,由问题2的结论可知,3S2=S1+S2+S3,即2S2=S1+S3,同理得2S3=S2+S4,2S4=S3+S5, 三式相加得,S2+S4=S1+S5, ∴S1+S2+S3+S4+S5=2(S2+S4)+S3=2×2S3+S3=5S3, 即S四边形P2Q2Q3P3=S四边形ABCD=; 问题4,如图4,关系式为:S2+S3=S1+S4.
复制答案
考点分析:
相关试题推荐
如图,直线l:manfen5.com 满分网经过点M,一组抛物线的顶点B1(1,y),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n为正整数),设x1=d(0<d<1).
(1)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(2)若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”,那么当d的大小在0<d<1范围内变化时,这组抛物线中是否存在美丽抛物线?若存在,请求出相应的d的值,若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,AB是半圆O的直径,点C是⊙O上一点(不与A,B重合),连接AC,BC,过点O作OD∥AC交BC于点D,在OD的延长线上取一点E,连接EB,使∠OEB=∠ABC.
(1)求证:BE是⊙O的切线;
(2)若OA=10,BC=16,求BE的长.

manfen5.com 满分网 查看答案
在一副扑克牌中取牌面花色分别为黑桃、红心、方块各一张,洗匀后正面朝下放在桌面上.
(1)从这三张牌中随机抽取一张牌,抽到牌面花色为红心的概率是多少?
(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面花色后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面花色.当两张牌的花色相同时,小王赢;当两张牌面的花色不相同时,小李赢.请你利用树状图或列表法分析该游戏规则对双方是否公平?并说明理由.
查看答案
我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?
(利润=销售总价-成本总价);
manfen5.com 满分网
查看答案
在一次数学活动课上,老师带领学生去测一条河的宽.如图所示,一学生在点A处观测到河对岸水边有一点C,测得C在北偏东59°的方向上,沿河岸向东前行20米到达B处,测得C在北偏东45°的方向上,
请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:manfen5.com 满分网
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.