某公司销售一种新型产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=
x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w
内(元),(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳
x
2元的附加费,设月利润为w
外(元),(利润=销售额-成本-附加费).
(1)分别求出w
内,w
外与x间的函数关系式(不必写x的取值范围);
(2)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(3)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
考点分析:
相关试题推荐
已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm
2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE
2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.
查看答案
如图.AB是⊙O的直径,点C、D在⊙O上,∠COD=∠DOB=60°,延长AB至E,使BE=
AB,连接CE、DE,CE与OD交于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,求sin∠AEC和OF的长.
查看答案
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学?
查看答案
先化简,再求值:
,其中x满足x
2-x-1=0.
查看答案