满分5 >
初中数学试题 >
计算2x2•(-3x3)的结果是( ) A.-6x5 B.6x5 C.-2x6 ...
计算2x2•(-3x3)的结果是( )
A.-6x5
B.6x5
C.-2x6
D.2x6
考点分析:
相关试题推荐
下列各数中,最小的数是( )
A.
B.0
C.-1
D.-3
查看答案
已知抛物线y=ax
2-2x+c与x轴交于A(-1,0)、B两点,与y轴交于点C,对称轴为x=1,顶点为E,直线y=-
x+1交y轴于点D.
(1)求抛物线的解析式;
(2)求证:△BCE∽△BOD;
(3)点P是抛物线上的一个动点,当点P运动到什么位置时,△BDP的面积等于△BOE的面积?
查看答案
某公司销售一种新型产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=
x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w
内(元),(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳
x
2元的附加费,设月利润为w
外(元),(利润=销售额-成本-附加费).
(1)分别求出w
内,w
外与x间的函数关系式(不必写x的取值范围);
(2)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(3)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
查看答案
已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm
2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE
2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.
查看答案
如图.AB是⊙O的直径,点C、D在⊙O上,∠COD=∠DOB=60°,延长AB至E,使BE=
AB,连接CE、DE,CE与OD交于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,求sin∠AEC和OF的长.
查看答案