满分5 > 初中数学试题 >

如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺...

如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.
(1)求∠DCE的度数;
(2)当AB=4,AD:DC=1:3时,求DE的长.

manfen5.com 满分网
(1)由题意我们知道∠A+∠C=90°,那么我们只要通过全等三角形来得出∠BCE=∠A,就能得出∠DCE=90°的结论,那么关键就是证明三角形ADB和CBE全等,根据题意我们知三角形CBE是由三角形ABD旋转得来,根据旋转的性质我们可得出两三角形全等. (2)由(1)可得出三角形DEC是个直角三角形,要求DE的长,就必须求出CD和CE,由(1)可知AD=CE,那么就必须求出AD和DC的长,有AD,CD的比例关系,那么求出AC就是关键.直角三角形ABC中,AB=AC,有AB的长,进而可得AC的值. 【解析】 (1)∵△CBE是由△ABD旋转得到的, ∴△ABD≌△CBE, ∴∠A=∠BCE=45°, ∴∠DCE=∠DCB+∠BCE=90°. (2)在等腰直角三角形ABC中, ∵AB=4,∴AC=4, 又∵AD:DC=1:3, ∴AD=,DC=3. 由(1)知AD=CE且∠DCE=90°, ∴DE2=DC2+CE2=2+18=20, ∴DE=2.
复制答案
考点分析:
相关试题推荐
和谐商场销售甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.
查看答案
已知△ABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π).

manfen5.com 满分网 查看答案
已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.
(1)图中哪个三角形与△FAD全等?证明你的结论;
(2)探索线段BF、FG、EF之间的关系,并说明理由.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.

manfen5.com 满分网 查看答案
(1)manfen5.com 满分网
(2)先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.