满分5 > 初中数学试题 >

如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=...

如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.
(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.

manfen5.com 满分网
(1)由四边形ABCD是正方形得到∠A=∠B=∠D=90°,AD=AB,又由∠EQP=∠FMN,而证得; (2)分为两种情况:①当E在AP上时,由点P是边AB的中点,AB=2,DQ=AE=t,又由勾股定理求得PQ,由△PEQ≌△NFM得到PQ的值,又PQ⊥MN求得面积S,由t范围得到S的最小值;②当E在BP上时,同法可求S的最小值. (1)证明:∵四边形ABCD是正方形, ∴∠A=∠B=∠D=90°,AD=AB, ∵QE⊥AB,MF⊥BC, ∴∠AEQ=∠MFB=90°, ∴四边形ABFM、AEQD都是矩形, ∴MF=AB,QE=AD,MF⊥QE, 又∵PQ⊥MN, ∴∠1+∠EQP=90°,∠2+∠FMN=90°, ∵∠1=∠2, ∴∠EQP=∠FMN, 又∵∠QEP=∠MFN=90°, ∴△PEQ≌△NFM; (2)【解析】 分为两种情况:①当E在AP上时, ∵点P是边AB的中点,AB=2,DQ=AE=t, ∴PA=1,PE=1-t,QE=2, 由勾股定理,得PQ==, ∵△PEQ≌△NFM, ∴MN=PQ=, 又∵PQ⊥MN, ∴S===t2-t+, ∵0≤t≤2, ∴当t=1时,S最小值=2. ②当E在BP上时, ∵点P是边AB的中点,AB=2,DQ=AE=t, ∴PA=1,PE=t-1,QE=2, 由勾股定理,得PQ==, ∵△PEQ≌△NFM, ∴MN=PQ=, 又∵PQ⊥MN, ∴S==[(t-1)2+4]=t2-t+, ∵0≤t≤2, ∴当t=1时,S最小值=2. 综上:S=t2-t+,S的最小值为2.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=manfen5.com 满分网(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.
(1)判断P是否在线段AB上,并说明理由;
(2)求△AOB的面积;
(3)Q是反比例函数y=manfen5.com 满分网(x>0)图象上异于点P的另一点,请以Q为圆心,QO半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.

manfen5.com 满分网 查看答案
manfen5.com 满分网某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是______(填①或②),月租费是______元;
(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
查看答案
在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.
(1)写出点M坐标的所有可能的结果;
(2)求点M在直线y=x上的概率;
(3)求点M的横坐标与纵坐标之和是偶数的概率.
查看答案
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取manfen5.com 满分网=1.732,结果精确到1m)

manfen5.com 满分网 查看答案
省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次第二次第三次第四次第五次第六次
10898109
107101098
(1)根据表格中的数据,计算出甲的平均成绩是______环,乙的平均成绩是______环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:s2=manfen5.com 满分网[manfen5.com 满分网])
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.