满分5 > 初中数学试题 >

某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹...

某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号AB
成本(万元/台)200240
售价(万元/台)250300
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价-成本)
(1)在题目中,每种型号的成本及总成本的上限和下限都已知,所以设生产A型挖掘机x台,则B型挖掘机(100-x)台的情况下,可列不等式22400≤200x+240(100-x)≤22500,解不等式,取其整数值即可求解; (2)在知道生产方案以及每种利润情况下可列函数解析式W=50x+60(100-x)=6000-10x,利用函数的自变量取值范围和其单调性即可求得函数的最值; (3)结合(2)得W=(50+m)x+60(100-x)=6000+(m-10)x,在此,必须把(m-10)正负性考虑清楚,即m>10,m=10,m<10三种情况,最终才能得出结论.即怎样安排,完全取决于m的大小. 【解析】 (1)设生产A型挖掘机x台,则B型挖掘机(100-x)台, 由题意得22400≤200x+240(100-x)≤22500, 解得37.5≤x≤40. ∵x取非负整数, ∴x为38,39,40. ∴有三种生产方案 ①A型38台,B型62台; ②A型39台,B型61台; ③A型40台,B型60台. (2)设获得利润W(万元),由题意得W=50x+60(100-x)=6000-10x ∴当x=38时,W最大=5620(万元), 即生产A型38台,B型62台时,获得最大利润. (3)由题意得W=(50+m)x+60(100-x)=6000+(m-10)x 总之,当0<m<10,则x=38时,W最大,即生产A型38台,B型62台; 当m=10时,m-10=0则三种生产方案获得利润相等; 当m>10,则x=40时,W最大,即生产A型40台,B型60台.
复制答案
考点分析:
相关试题推荐
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点manfen5.com 满分网E,且AE=AC.
(1)求证:BG=FG;
(2)若AD=DC=2,求AB的长.
查看答案
如图所示,A、B两城市相距200km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,100km为半径的圆形区域内,请问:计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
某服装店经营某种品牌童装,进价为每件120元,根据经验,售价定为每件180元时,每月可卖出100件,定价每降价10元,销售量将增加20件.
(1)设降价x元时,每月所获利润为y元,写出y与x的函数关系式.并求出当定价为多少时利润最大?最大利润是多少?
(2)商店要获得6000元的利润,同时要减少库存,定价应为多少元?
查看答案
某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).manfen5.com 满分网
请你根据图中提供的信息,回答下列问题:
(1)求出该校初一学生总数;
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?
查看答案
如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1,S2,S3,则S1,S2,S3之间的关系是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.