满分5 > 初中数学试题 >

如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4, (1...

如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

manfen5.com 满分网
(1)根据AB=AC,可得∠ABC=∠C,利用等量代换可得∠ABC=∠D然后即可证明△ABE∽△ADB. (2)根据△ABE∽△ADB,利用其对应边成比例,将已知数值代入即可求得AB的长. (3)连接OA,根据BD为⊙O的直径可得∠BAD=90°,利用勾股定理求得BD,然后再求证∠OAF=90°即可. (1)证明:∵AB=AC, ∴∠ABC=∠C(等边对等角), ∵∠C=∠D(同弧所对的圆周角相等), ∴∠ABC=∠D(等量代换), 又∵∠BAE=∠DAB, ∴△ABE∽△ADB, (2)【解析】 ∵△ABE∽△ADB, ∴, ∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12, ∴AB=. (3)【解析】 直线FA与⊙O相切,理由如下: 连接OA,∵BD为⊙O的直径, ∴∠BAD=90°, ∴=4 BF=BO=, ∵AB=, ∴BF=BO=AB, ∴∠OAF=90°, ∴OA⊥AF, ∴直线FA与⊙O相切.
复制答案
考点分析:
相关试题推荐
有3张扑克牌,分別是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.
(1)先后两次抽得的数字分别记为s和t,求|s-t|≥l的概率.
(2)甲、乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?
查看答案
某学校为了解学生每周在饮料方面的花费情况进行了抽样调查,调查结果制成了条形统计图和扇形统计图.请你结合图中信息完成下列问题:
manfen5.com 满分网
(1)补全条形统计图.
(2)本次抽样调查了多少名学生?
(3)请求出抽样调查的数据的平均数,并直接写出中位数和众数.
(4)扇形统计图中,花费20元的人数所在扇形圆心角度数为多少度?
查看答案
如图,在边长为1的小正方形组成的网格,直角梯形ABEF的顶点均在格点上,请按要求完成下列各题:
(1)请在图中拼上一个直角梯形,使它与梯形ABEF构成一个等腰梯形ABCD;
(2)将等腰梯形ABCD绕点C按顺时针方向旋转90°,画出相应的图形A1B1CD1
(3)求点A旋转到点A1时,点A所经过的路线长.(结果保留π)

manfen5.com 满分网 查看答案
先化简manfen5.com 满分网,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
查看答案
manfen5.com 满分网如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.