满分5 > 初中数学试题 >

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左...

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.
manfen5.com 满分网
(1)解一元二次方程x2-4x-12=0可求A、B两点坐标; (2)将A、B两点坐标代入二次函数y=ax2+bx+6,可求二次函数解析式,配方为顶点式,可求对称轴及顶点坐标; (3)作点C关于抛物线对称轴的对称点C′,连接AC′,交抛物线对称轴于P点,连接CP,P点即为所求; (4)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面积,利用三角形面积公式表示△ACQ的面积,根据S△CDQ=S△ABC-S△BDQ-S△ACQ,运用二次函数的性质求面积最大时,m的值. 【解析】 (1)A(-2,0),B(6,0); (2)将A、B两点坐标代入二次函数y=ax2+bx+6,得 , 解得, ∴y=-x2+2x+6, ∵y=-(x-2)2+8, ∴抛物线对称轴为x=2,顶点坐标为(2,8); (3)如图,作点C关于抛物线对称轴的对称点C′,连接AC′,交抛物线对称轴于P点,连接CP, ∵C(0,6), ∴C′(4,6),设直线AC′解析式为y=ax+b,则 , 解得, ∴y=x+2,当x=2时,y=4, 即P(2,4); (4)依题意,得AB=8,QB=6-m,AQ=m+2,OC=6,则S△ABC=AB×OC=24, ∵由DQ∥AC,∴△BDQ∽△BCA, ∴=()2=()2, 即S△BDQ=(m-6)2, 又S△ACQ=AQ×OC=3m+6, ∴S=S△ABC-S△BDQ-S△ACQ=24-(m-6)2-(3m+6)=-m2+m+=-(m-2)2+6, ∴当m=2时,S最大.
复制答案
考点分析:
相关试题推荐
如图1,在△ABC中,∠ABC=90°,AB=BC,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°),得到△EFD,点A的对应点为点E,点B的对应点为点F,连接BE、CF.
(1)判断BE与CF的位置、数量关系,并说明理由;
(2)若连接BF、CE,请直接写出在旋转过程中四边形BCEF能形成哪些特殊四边形;
(3)如图2,将△ABC中AB=BC改成AB≠BC时,其他条件不变,直接写出α为多少度时(1)中的两个结论同时成立.

manfen5.com 满分网 查看答案
2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:
成本价(万元/辆)售价(万元/辆)
A型3032
B型4245
(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?
(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?
(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.
查看答案
假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73 )

manfen5.com 满分网 查看答案
甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.
(2)求乙组加工零件总量a的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?

manfen5.com 满分网 查看答案
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.