过P作BC的平行线,交AC于M;则△APM也是等边三角形,在等边三角形APM中,PE是AM上的高,根据等边三角形三线合一的性质知AE=EM;易证得△PMD≌△QCD,则DM=CD;此时发现DE的长正好是AC的一半,由此得解.
【解析】
过P作PM∥BC,交AC于M;
∵△ABC是等边三角形,且PM∥BC,
∴△APM是等边三角形;
又∵PE⊥AM,
∴AE=EM=AM;(等边三角形三线合一)
∵PM∥CQ,
∴∠PMD=∠QCD,∠MPD=∠Q;
又∵PA=PM=CQ,
在△PMD和△QCD中
∴△PMD≌△QCD(AAS);
∴CD=DM=CM;
∴DE=DM+ME=(AM+MC)=AC=,故选B.