满分5 > 初中数学试题 >

如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B...

如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.
(1)求证:BF=FD;
(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.

manfen5.com 满分网
(1)欲证BF=FD,可证BF=EF,FD=EF.欲证BF=EF,在△BEF中,可证∠BEF=∠EBF,由于CE为直角△ABE斜边AB的中线,所以CB=CE,根据等边对等角,得出∠CEB=∠CBE,又∠CEF=∠CBF=90°,由等角的余角相等得出∠BEF=∠EBF;欲证FD=EF,在△FED中,可证∠FED=∠EDF,由于∠BEF+∠FED=90°,∠EBD+∠EDB=90°,而∠BEF=∠EBF,故∠FED=∠EDF. (2)假设点D在运动过程中能使四边形ACFE为平行四边形,则AC∥EF,AC=EF,由(1)知AC=CB=AB,EF=BF=BD,则BC=EF=BF,即BA=BD,∠A=45°. 【解析】 (1)在Rt△AEB中,∵AC=BC, ∴, ∴CB=CE, ∴∠CEB=∠CBE. ∵∠CEF=∠CBF=90°, ∴∠BEF=∠EBF, ∴EF=BF. ∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°, ∴∠FED=∠EDF, ∵EF=FD. ∴BF=FD. (2)能.理由如下: 若四边形ACFE为平行四边形,则AC∥EF,AC=EF, ∴BC=BF, ∴BA=BD,∠A=45°. ∴当∠A=45°时四边形ACFE为平行四边形.
复制答案
考点分析:
相关试题推荐
某汽车经销公司计划经销A、B两种品牌的轿车50辆,该公司经销这50辆轿车的成本不少于1240万元,但不超过1244万元,两种轿车的成本和售价如下表.
AB
成本(万元/辆)2426
售价(万元/辆)2730
(1)该公司经销这两种品牌轿车有哪几种方案,哪种方案获利最大,最大利润是多少?
(2)根据市场调查,一段时期内,B牌轿车售价不会改变,每辆A牌轿车的售价将会提高a万元(0<a<1.2),且所有两种轿车全部售出,哪种经销方案获利最大?(注:利润=售价-成本)
查看答案
如图,山脚下有一棵树AB,小华从点B沿山坡向上走50米到达点D,用高为1.5米的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精确到0.1米)
(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27.)

manfen5.com 满分网 查看答案
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4,DC=6,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

manfen5.com 满分网 查看答案
某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到一组数据,下面两图(如图)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题:
(1)求在这次活动中一共调查了多少名学生;
(2)在扇形统计图中,求“教师”所在扇形的圆心角的度数;
(3)补全两幅统计图.

manfen5.com 满分网 查看答案
如图所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.
(1)画出四边形OABC关于y轴对称的四边形OA1B1C1,并写出点B1的坐标是______
(2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA2B2C2,并求出点C旋转到点C2经过的路径的长度.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.