如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A⇒B⇒C方向以每秒2cm的速度运动,到点C停止,点Q沿A⇒D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设x秒后橡皮筋扫过的面积为ycm
2.
(1)当0≤x≤1时,求y与x之间的函数关系式;
(2)当橡皮筋刚好触及钉子时,求x值;
(3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围;
(4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象.
考点分析:
相关试题推荐
在等腰梯形ABCD中,AD∥BC,AB=DC,且BC=2.以CD为直径作⊙O
1交AD于点E,过点E作EF⊥AB于点F.建立如图所示的平面直角坐标系,已知A、B两点坐标分别为A(2,0),B(0,
).
(1)求C,D两点的坐标;
(2)求证:EF为⊙O
1的切线;
(3)线段CD上是否存在点P,使以点P为圆心,PD为半径的⊙P与y轴相切.如果存在,请求出P点坐标;如果不存在,请说明理由.
查看答案
某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工 | 管理人员 | 普通工作人员 |
人员结构 | 总经理 | 部门经理 | 科研人员 | 销售人员 | 高级技工 | 中级技工 | 勤杂工 |
员工数(名) | 1 | 3 | 2 | 3 | | 24 | 1 |
每人月工资(元) | 21000 | 8400 | 2025 | 2200 | 1800 | 1600 | 950 |
请你根据上述内容,解答下列问题:
(1)该公司“高级技工”有______名;
(2)所有员工月工资的平均数x为2500元,中位数为______元,众数为______元;
(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资
(结果保留整数),并判断
能否反映该公司员工的月工资实际水平.
查看答案
如图,已知某小区的两幢10层住宅楼间的距离为AC=30 m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.
(1)用含α的式子表示h(不必指出α的取值范围);
(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?
查看答案
如图每个正方形是由边长为1的小正方形组成.
(1)观察图形,请填与下列表格:
(2)在边长为n(n≥1)的正方形中,设红色小正方形的个数为P
1,白色小正方形的个数为P
2,问是否存在偶数n,使P
2=5P
1?若存在,请写出n的值;若不存在,请说明理由.
查看答案
将图1中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′BC′,除△ADC与△C′BA′全等外,你还可以指出哪几对全等的三角形(不能添加辅助线和字母)请选择其中一对加以证明.
查看答案