满分5 > 初中数学试题 >

如图1,点P是线段AB的中点,分别以AP和BP为边在线段AB的同侧作等边三角形A...

如图1,点P是线段AB的中点,分别以AP和BP为边在线段AB的同侧作等边三角形APC和等边三角形BPD,连接CD,得到四边形ABDC.
(1)在图1中顺次连接边AC、AB、BD、CD的中点E、F、G、H,则四边形EFGH的形状是______
(2)如图2,若点P是线段AB上任一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,得四边形ABDC,则(1)中结论还成立吗?说明理由;
(3)如图3,若点P是线段AB外一点,在△APB的外部作△APC和△BPD,使PC=PA,PD=PB,且∠APC=∠BPD=90°,请你先补全图3,再判断四边形EFGH的形状,并说明理由.
manfen5.com 满分网
(1)四边形EFGH为菱形,可以由EH为三角形ACD的中位线,根据中位线定理得到EH平行与AD,且EH等于AD的一半,同理由PG为三角形ABD的中位线,得到PG平行于AD,且PG等于AD的一半,可得出EH与PG平行且相等,得到EFGH为平行四边形,再由三角形APC与三角形BDP都为等边三角形且P为AB的中点,可得出AP=CP,PD=PB,且∠APD=∠CPB=120°,利用SAS得到三角形APD与三角形CPB全等,根据全等三角形的对应边相等可得出AD=BC,再由三角形中位线定理得到HG为BC的一半,等量代换可得出HE=HG,得到平行四边形为菱形; (2)(1)的结论仍成立,理由为:连接AD,BC,如图2所示,可以由EH为三角形ACD的中位线,根据中位线定理得到EH平行与AD,且EH等于AD的一半,同理由PG为三角形ABD的中位线,得到PG平行于AD,且PG等于AD的一半,可得出EH与PG平行且相等,得到EFGH为平行四边形,由∠APC=∠BPD,两边都加上∠CPD,可得出∠APD=∠CPB,再由AP=CP,DP=BP,利用SAS可得出三角形APD与三角形CPB全等,根据全等三角形的对应边相等可得出AD=BC,再由三角形中位线定理得到HG为BC的一半,等量代换可得出HE=HG,得到平行四边形为菱形; (3)根据题意补充图形,连接AD,BC,如图3所示,可以由EH为三角形ACD的中位线,根据中位线定理得到EH平行与AD,且EH等于AD的一半,同理由PG为三角形ABD的中位线,得到PG平行于AD,且PG等于AD的一半,可得出EH与PG平行且相等,得到EFGH为平行四边形,由∠APC=∠BPD,两边都加上∠CPD,可得出∠APD=∠CPB,再由AP=CP,DP=BP,利用SAS可得出三角形APD与三角形CPB全等,根据全等三角形的对应边相等可得出AD=BC,再由三角形中位线定理得到HG为BC的一半,等量代换可得出HE=HG,得到平行四边形为菱形. 【解析】 (1)四边形EFGH的形状是菱形; (2)第一问的结论仍成立,即四边形EFGH为菱形,理由为: 连接AD,BC,如图2所示, ∵∠APC=∠BPD, ∴∠APC+∠CPD=∠BPD+∠CPD,即∠APD=∠CPB, 在△APD和△CPB中, , ∴△APD≌△CPB(SAS), ∴AD=BC, 在△ACD中,E为AC中点,H为CD中点, ∴EH为△ACD的中位线, ∴EH=AD,EH∥AD, 同理PG=AD,PG∥AD,HG=AC, ∴EH=PG,EH∥PG,且EH=HG, 四边形EFGH为菱形; (3)四边形EFGH为正方形,理由为: 连接AD,BC,如图3所示, ∵∠APC=∠BPD, ∴∠APC+∠CPD=∠BPD+∠CPD,即∠APD=∠CPB, 在△APD和△CPB中, , ∴△APD≌△CPB(SAS), ∴AD=BC,∠DAP=∠BCP, 在△ACD中,E为AC中点,H为CD中点, ∴EH为△ACD的中位线, ∴EH=AD,EH∥AD, 同理PG=FG,PG∥AD,HG=AC, ∴EH=PG,EH∥PG,且EH=HG, 四边形EFGH为菱形, 又∠CMN=∠AMP,∠DAP=∠BCP, ∴△CMN∽△AMP,又∠APC=90°, ∴∠CNM=∠APC=90°, ∴四边形EFGH为正方形. 故答案为:正方形
复制答案
考点分析:
相关试题推荐
如图1,某商场有一双向运行的自动扶梯,扶梯上行和下行的速度保持不变且相同,甲、乙两人同时站上了此扶梯的上行和下行端,甲站上上行扶梯的同时又以0.8m/s的速度往上跑,乙站上下行扶梯后则站立不动随扶梯下行,两人在途中相遇,甲到达扶梯顶端后立即乘坐下行扶梯,同时以0.8m/s的速度往下跑,而乙到达底端后则在原地等候甲.图2中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底端的路程y(m)与所用时间x(s)之间的部分函数关系,结合图象解答下列问题:
(1)点B的坐标是______
(2)求AB所在直线的函数关系式;
(3)乙到达扶梯底端后,还需等待多长时间,甲才到达扶梯底端?
manfen5.com 满分网
查看答案
图1为一锐角是30°的直角三角尺,其框为透明塑料制成(内、外直角三角形对应边互相平行).将三角尺移向直径为4cm的⊙O,它的内Rt△ABC的斜边AB恰好等于⊙O的直径,它的外Rt△A′B′C′的直角边A′C′恰好与⊙O相切(如图2),求直角三角尺的宽.
manfen5.com 满分网
查看答案
某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.
(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是______(填写序号);
(2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;
(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为______人.
(注:图2中相邻两虚线形成的圆心角为30°)
manfen5.com 满分网
查看答案
当太阳光线与地面成60°角时,在坡度为i=1:2的斜坡上的一棵树AB落在坡面上的影子AC长为5米,落在水平线上的影子CD长为3米,求这棵树的高度.

manfen5.com 满分网 查看答案
(1)解方程:x2+2x-1=0.
(2)解不等式组:manfen5.com 满分网,并将解集在数轴上表示出来.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.