满分5 > 初中数学试题 >

如图,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接DC,且∠B...

如图,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接DC,且∠B=∠D=30°.
(1)判断直线CD与⊙O的位置关系,并说明理由.
(2)若AC=6,求图中弓形(即阴影部分)的面积.

manfen5.com 满分网
(1)连接OC.欲证明DE是⊙O的切线,只需证明DC⊥OC即可; (2)利用弓形的面积等于扇形的面积减去三角形的面积计算阴影部分的面积即可. 【解析】 (1)直线CD是⊙O的切线 理由如下: 如图,连接OC ∵∠AOC、∠ABC分别是AC所对的圆心角、圆周角 ∴∠AOC=2∠ABC=2×30°=60° ∴∠D+∠AOC=30°+60°=90° ∴∠DCO=90° ∴OC⊥CD, ∴CD是⊙O的切线 (2)过O作OE⊥AC,点E为垂足 ∵OA=OC,∠AOC=60° ∴△AOC是等边三角形 ∴OA=OC=AC=6,∠OAC=60° 在Rt△AOE中 OE=OA•sin∠OAC=6•sin60°=3 ∴S△AOC= ∵S扇形AOC==6π ∴S阴=S扇形AOC-S△AOC=6π-9
复制答案
考点分析:
相关试题推荐
绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
查看答案
2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦.也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸从中摸出一个球,如果摸出的是红球.妹妹去听讲座,如果摸出的是白球,小明去听讲座.
(1)爸爸说这个办法不公平,请你用概率的知识解释原因.
(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,问摸球的结果是对小明有利还是对妹妹有利.说明理由.
查看答案
某一特殊路段规定:汽车行驶速度不超过36千米/时.一辆汽车在该路段上由东向西行驶,如图所示,在距离路边10米O处有一“车速检测仪”,测得该车从北偏东60°的A点行驶到北偏东30°的B点,所用时间为1秒.
(1)试求该车从A点到B点的平均速度.
(2)试说明该车是否超速.(manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
已知函数y=mx2-6x+1(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求m的值.
查看答案
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.