如图,抛物线F:y=ax
2+bx+c(a>0)与y轴相交于点C,直线L
1经过点C且平行于x轴,将L
1向上平移t个单位得到直线L
2,设L
1与抛物线F的交点为C、D,L
2与抛物线F的交点为A、B,连接AC、BC.
(1)当
,
,c=1,t=2时,探究△ABC的形状,并说明理由;
(2)若△ABC为直角三角形,求t的值(用含a的式子表示);
(3)在(2)的条件下,若点A关于y轴的对称点A’恰好在抛物线F的对称轴上,连接A’C,BD,求四边形A’CDB的面积(用含a的式子表示)
考点分析:
相关试题推荐
某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途经配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图象.
(1)A、B两地的距离是______千米,甲车出发______小时到达C地;
(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图象;
(3)乙车出发多长时间,两车相距150千米.
查看答案
如图,在△ABC中,AB=AC=5,BC=6,动点P从点A出发沿AB向点B移动,(点P与点A、B不重合),作PD∥BC交AC于点D,在DC上取点E,以DE、DP为邻边作平行四边形PFED,使点F到PD的距离
,连接BF,设AP=x.
(1)△ABC的面积等于______;
(2)设△PBF的面积为y,求y与x的函数关系,并求y的最大值.
查看答案
如图1,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=kEA,探索线段EF与EG的数量关系,并证明你的结论.
说明:如果你反复探索没有解决问题,可以选取(1)或(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为5分.
(1)m=1(如图2)
(2)m=1,k=1(如图3)
查看答案
如图,一艘海轮位于灯塔C的北偏东30°方向,距离灯塔80海里的A处,海轮沿正南方向匀速航行一段时间后,到达位于灯塔C的东南方向上的B处.
(1)求灯塔C到航线AB的距离;
(2)若海轮的速度为20海里/时,求海轮从A处到B处所用的时间(结果精确到0.1小时)
(参考数据:
,
)
查看答案
如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.
查看答案