满分5 > 初中数学试题 >

如图,四边形ABCD为正方形,点A在x轴上,点B在y轴上,且OA=2,OB=4,...

如图,四边形ABCD为正方形,点A在x轴上,点B在y轴上,且OA=2,OB=4,反比例函数manfen5.com 满分网在第一象限的图象经过正方形的顶点D.
(1)求反比例函数的关系式;
(2)将正方形ABCD沿x轴向左平移______个单位长度时,点C恰好落在反比例函数的图象上.

manfen5.com 满分网
(1)过点D作DE⊥x轴于点E,由全等三角形的判定定理得出△AOB≌△DEA,再由全等三角形的性质可得出OE=OA+EA=6,ED=OA=2,故可得出D点坐标,把D点坐标代入反比例函数的解析式即可得出k的值,进而得出结论; (2)过点C作CF⊥y轴于点F,同(1)可得△AOB≌△BFC,故CF=OB=4,BF=OA=2,故可得出C点坐标,把C点纵坐标代入反比例函数的解析式求出M点坐标,再把C、M两点的横坐标相减即可得出结论. 【解析】 (1)如图1,过点D作DE⊥x轴于点E.则∠DEA=∠AOB=90°, ∵四边形ABCD为正方形, ∴∠BAD=90°,AB=DA, ∴∠2+∠3=90°, ∵∠1+∠3=90°, ∴∠1=∠2, ∴△AOB≌△DEA, ∴ED=OA=2,EA=OB=4, ∴OE=OA+EA=6 ∴点D的坐标为(6,2) 把D(6,2)代入得:,解得:k=12, ∴所求的反比例函数关系式为; (2)如图2,过点C作CF⊥y轴于点F,交双曲线于点M, 同(1)可得△AOB≌△BFC,故CF=OB=4,BF=OA=2, ∴C(4,6), ∵在反比例函数y=中,当y=6时,x==2, ∴M(2,6), ∵CM=CF-MF=4-2=2, ∴将正方形ABCD沿x轴向左平移2个单位长度时,点C恰好落在反比例函数的图象上. 故答案为:2.
复制答案
考点分析:
相关试题推荐
某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图所示).
组别次数x频数(人数)
第1组50≤x<704
第2组70≤x<90a
第3组90≤x<11018
第4组110≤x<130b
第5组130≤x<1504
第6组150≤x<1702
根据图表解答下列问题:
(1)在统计表中,a的值为______,b的值为______,并将统计图补充完整(温馨提示:作图时别忘了用黑色签字笔涂黑);
(2)这个样本数据的中位数落在第______组;
(3)若七年级男生个人一分钟跳绳次数x≥130时成绩为优秀,该校七年级入学时男生共有150人,请估计该校七年级男生个人一分钟跳绳成绩为优秀的人数.

manfen5.com 满分网 查看答案
一个盒子中装有4张形状大小都相同的卡片,卡片上的编号分别为1、-2、-3、4,现从盒子中随机抽取一张卡片,将其编号记为a,再从剩下的三张中任取一张,将其编号记为b,这样就确定了点M的一个坐标,记为M(a,b).
(1)求第一次抽到编号为-2的概率;
(2)请用树状图或列表法,求点M(a,b)在第四象限的概率.
查看答案
如图,在▱ABCD中,点E、F分别是BC、AD的中点.求证:AE=CF.

manfen5.com 满分网 查看答案
先化简,再求值:(x-2)2+(1+x)(1-x),其中manfen5.com 满分网
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.