把一块三角板置于平面直角坐标系中,三角板的直角顶点为P,两直角边与x轴交于A、B,如图1,测得PA=PB,AB=2.以P为顶点的抛物线y=-(x-2)
2+k恰好经过A、B两点,抛物线的对称轴x=a与x轴交于点E.
(1)填空:a=______,k=______,点E的坐标为______;
(2)设抛物线与y轴交于点C,过P作直线PM⊥y轴,垂足为M.如图2,把三角板绕着点P旋转一定角度,使其中一条直角边恰好过点C,另一条直角边与抛物线的交点为D,试问:点C、D、E三点是否在同一直线上?请说明理由.
(3)在(2)的条件下,若Q(m,n)为抛物线上的一动点,连接CF、QC,过Q作QF⊥PM,垂足为F.试探索:是否存在点Q,使得△QCF是以QC为腰的等腰三角形?若存在,请求出m的值;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,△ABC是等边三角形,点A坐标为(-8,0)、点B坐标为(8,0),点C在y轴的正半轴上.一条动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线
交于点D,与线段BC交于点E.以DE为边向左侧作等边△DEF,EF与y轴的交点为G.当点D与点E重合时,直线l停止运动,设直线l的运动时间为t(秒).
(1)填空:点C的坐标为______
查看答案
甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,乙车比甲车的速度每小时慢10千米,结果两辆车同时到达C城.设甲车的速度为每小时x千米.
(1)根据题意填写下表(用含x的代数式表示):
| 行驶的路程(千米) | 速度(千米/时) | 所需时间(小时) |
甲车 | 450 | x | |
乙车 | 400 | | |
(2)求甲、乙两车的速度.
查看答案
如图,四边形ABCD为正方形,点A在x轴上,点B在y轴上,且OA=2,OB=4,反比例函数
在第一象限的图象经过正方形的顶点D.
(1)求反比例函数的关系式;
(2)将正方形ABCD沿x轴向左平移______个单位长度时,点C恰好落在反比例函数的图象上.
查看答案
某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图所示).
组别 | 次数x | 频数(人数) |
第1组 | 50≤x<70 | 4 |
第2组 | 70≤x<90 | a |
第3组 | 90≤x<110 | 18 |
第4组 | 110≤x<130 | b |
第5组 | 130≤x<150 | 4 |
第6组 | 150≤x<170 | 2 |
根据图表解答下列问题:
(1)在统计表中,a的值为______,b的值为______,并将统计图补充完整(温馨提示:作图时别忘了用黑色签字笔涂黑);
(2)这个样本数据的中位数落在第______组;
(3)若七年级男生个人一分钟跳绳次数x≥130时成绩为优秀,该校七年级入学时男生共有150人,请估计该校七年级男生个人一分钟跳绳成绩为优秀的人数.
查看答案
一个盒子中装有4张形状大小都相同的卡片,卡片上的编号分别为1、-2、-3、4,现从盒子中随机抽取一张卡片,将其编号记为a,再从剩下的三张中任取一张,将其编号记为b,这样就确定了点M的一个坐标,记为M(a,b).
(1)求第一次抽到编号为-2的概率;
(2)请用树状图或列表法,求点M(a,b)在第四象限的概率.
查看答案