满分5 > 初中数学试题 >

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,A...

manfen5.com 满分网如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=manfen5.com 满分网AB;
(3)点M是manfen5.com 满分网的中点,CM交AB于点N,若AB=4,求MN•MC的值.
(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线; (2)AB是直径;故只需证明BC与半径相等即可; (3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN•MC;代入数据可得MN•MC=BM2=8. (1)证明:∵OA=OC, ∴∠A=∠ACO. 又∵∠COB=2∠A,∠COB=2∠PCB, ∴∠A=∠ACO=∠PCB. 又∵AB是⊙O的直径, ∴∠ACO+∠OCB=90°. ∴∠PCB+∠OCB=90°. 即OC⊥CP, ∵OC是⊙O的半径. ∴PC是⊙O的切线.(3分) (2)证明:∵AC=PC, ∴∠A=∠P, ∴∠A=∠ACO=∠PCB=∠P. 又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB, ∴∠COB=∠CBO, ∴BC=OC. ∴BC=AB.(6分) (3)【解析】 连接MA,MB, ∵点M是的中点, ∴, ∴∠ACM=∠BCM. ∵∠ACM=∠ABM, ∴∠BCM=∠ABM. ∵∠BMN=∠BMC, ∴△MBN∽△MCB. ∴. ∴BM2=MN•MC. 又∵AB是⊙O的直径,, ∴∠AMB=90°,AM=BM. ∵AB=4, ∴BM=2. ∴MN•MC=BM2=8.(10分)
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.
manfen5.com 满分网
(1)填写下列各点的坐标:
A1____________),
A3____________),
A12____________);
(2)写出点A4n的坐标(n是正整数);
(3)指出蚂蚁从点A100到A101的移动方向.
查看答案
如图,直线y=kx+b与反比例函数y=manfen5.com 满分网(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4.
(1)试确定反比例函数的关系式;
(2)求△AOC的面积.

manfen5.com 满分网 查看答案
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2
(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1
(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2

manfen5.com 满分网 查看答案
在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

manfen5.com 满分网 查看答案
解分式方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.