满分5 > 初中数学试题 >

如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴...

如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
(1)求线段AD所在直线的函数表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A⇒D⇒C⇒B⇒A的顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.

manfen5.com 满分网
(1)在Rt△AOD中,根据OA的长以及∠BAD的正切值,即可求得OD的长,从而得到D点的坐标,然后利用待定系数法可求得直线AD的解析式. (2)由于点P沿菱形的四边匀速运动一周,那么本题要分作四种情况考虑: 在Rt△OAD中,易求得AD的长,也就得到了菱形的边长,而菱形的对角线平分一组对角,那么∠DAC=∠BAC=∠BCA=∠DCA=30°; ①当点P在线段AD上时,若⊙P与AC相切,由于∠PAC=30°,那么AP=2R(R为⊙P的半径),由此可求得AP的长,即可得到t的值; ②③④的解题思路与①完全相同,只不过在求t值时,方法略有不同. 【解析】 (1)∵点A的坐标为(-2,0),∠BAD=60°,∠AOD=90°, ∴OD=OA•tan60°=, ∴点D的坐标为(0,),(1分) 设直线AD的函数表达式为y=kx+b,, 解得. ∴直线AD的函数表达式为.(3分) (2)∵四边形ABCD是菱形, ∴∠DCB=∠BAD=60°, ∴∠1=∠2=∠3=∠4=30°, AD=DC=CB=BA=4,(5分) 如图所示: ①点P在AD上与AC相切时, AP1=2r=2, ∴t1=2.(6分) ②点P在DC上与AC相切时, CP2=2r=2, ∴AD+DP2=6, ∴t2=6.(7分) ③点P在BC上与AC相切时, CP3=2r=2, ∴AD+DC+CP3=10, ∴t3=10.(8分) ④点P在AB上与AC相切时, AP4=2r=2, ∴AD+DC+CB+BP4=14, ∴t4=14, ∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切.(9分)
复制答案
考点分析:
相关试题推荐
如图,一次函数y=-manfen5.com 满分网x-2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=manfen5.com 满分网(x<0)的图象于点Q,且tan∠AOQ=manfen5.com 满分网
(1)求k的值;
(2)连接OP、AQ,求证:四边形APOQ是菱形.

manfen5.com 满分网 查看答案
某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;
(3)小英家3月份用水24吨,她家应交水费多少元?
查看答案
某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图.
(1)D型号种子的粒数是______
(2)请你将图2的统计图补充完整;
(3)通过计算说明,应选哪一个型号的种子进行推广;
(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B型号发芽种子的概率.manfen5.com 满分网
查看答案
如图,EB=EG,请从下面三个条件:①DE=DF; ②AB=AC; ③BE=CF中,再选两个作为已知条件,另一个作为结论,写出一个真命题(只需写出一种情况),并加以证明.
已知:EB=EG,____________
求证:______
证明:

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.