大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h
1、h
2.
(1)请你结合图形来证明:h
1+h
2=h;
(2)当点M在BC延长线上时,h
1、h
2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l
1:y=
x+3,l
2:y=-3x+3,若l
2上的一点M到l
1的距离是
.求点M的坐标.
考点分析:
相关试题推荐
如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是
的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.
(1)求证:EF是⊙O的切线;
(2)若EF=8,EC=6,求⊙O的半径.
查看答案
同学们在学完解直角三角形的应用后,某合作学习小组用测倾器、皮尺测量了学校旗杆的高度,他们设计了如下方案(如图所示):
①在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=30°;
②量出测点A到旗杆底部N的水平距离AN=20m;
③量出测倾器的高度AC=1m.
(1)根据上述测量数据,即可求出旗杆的高度MN=______.(结果可以保留根号)
(2)如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图)的方案.要求:
(ⅰ)在图中,画出你测量小山高度MN的示意图(标上适当字母);
(ⅱ)写出你设计的方案.(测倾器的高度用h表示,其它涉及的长度用字母a、b、c…表示,涉及到的角度用α、β…表示,最后请给出计算MN的高度的式子).
查看答案
如图,抛物线y
1=-x
2+2向右平移1个单位得到抛物线y
2,回答下列问题:
(1)抛物线y
2的顶点坐标______;
(2)阴影部分的面积S=______;
(3)若再将抛物线y
2绕原点O旋转180°得到抛物线y
3,求抛物线y
3的解析式.
查看答案
2006年春,我市为美化市容,开展城市绿化活动,要种植一种新品种树苗.甲、乙两处育苗基地均以每株4元的价格出售这种树苗,并对一次性购买该种树苗不低于1000株的用户均实行优惠:甲处的优惠政策是每株树苗按原价的八折出售;乙处的优惠政策是免收所购树苗中150株的费用,其余树苗按原价的九折出售.
(1)规定购买该种树苗只能在甲、乙两处中的一处购买,设一次性购买x(x≥1000且x为整数)株该种树苗,若在甲处育苗基地购买,所花的费用为y
1元,写出y
1与x之间的函数关系式;若在乙处育苗基地购买,所花的费用为y
2元,写出y
2与x之间的函数关系式;(两个函数关系式均不要求写出自变量x的取值范围)
(2)若在甲、乙两处分别一次性购买1500株该种树苗,在哪一处购买所花的费用少,为什么?
(3)若在甲育苗基地以相应的优惠方式购买一批该种树苗,又在乙育苗基地以相应的优惠方式购买另一批该种树苗,两批树苗共2500株,购买这2500株树苗所花的费用至少需要多少元?这时应在甲、乙两处分别购买该种树苗多少株?
查看答案
随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2008年2月底,该市五个地区的100周岁以上的老人分布如下表(单位:人):
地区 性别 | 一 | 二 | 三 | 四 | 五 |
男性 | 21 | 30 | 38 | 42 | 20 |
女性 | 39 | 50 | 73 | 70 | 37 |
根据表格中的数据得到条形统计图如图:
解答下列问题:
(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;
(2)填空:该市五个地区100周岁以上的老人中,五个地区的:男性人数的极差是______人,女性人数的中位数是______人;
(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多少人?
查看答案