满分5 > 初中数学试题 >

观察思考: 某种在同一平面进行传动的机械装置如图1,图2是它的示意图.其工作原理...

观察思考:
某种在同一平面进行传动的机械装置如图1,图2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH⊥l于点H,并测得OH=4分米,PQ=3分米,OP=2分米.manfen5.com 满分网
解决问题:
(1)点Q与点O间的最小距离是______分米;点Q与点O间的最大距离是______分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是______分米;
(2)如图3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?
为什么?
(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是______分米;
②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.
(1)当OQ最小时,Q、H重合,此时OQ=OH=4;当O、Q的距离最大时,O、P、Q三点共线,此时OQ=OP+PQ=5;当O、P、Q三点共线时,在Rt△OQH中,由勾股定理可求得QH=3,那么点Q在l上的最大滑动距离为2QH=6. (2)显然不对,当Q、H重合时,OP=2、PQ=3、OQ=4,显然构不成直角三角形,故PQ与⊙O不相切. (3)①当P到直线l的距离最长时,这个最大距离为PQ=3,此时PQ⊥直线l; ②当P到直线l的距离最大时,OP无法再向下摆动,若设点P摆动的两个极限位置为P、P′,连接PP′,则四边形PQ′QP是矩形,设OH与PP′交于点D,那么PQ′=DH=PQ=3,则OD=OH-DH=1,在Rt△OPD中,OP=2,OD=1,则∠POD=60°,∠POP′=120°,由此得解. 【解析】 (1)4,5,6; (2)不对. ∵OP=2,PQ=3,OQ=4,且42≠32+22,即OQ2≠PQ2+OP2, ∴OP与PQ不垂直.∴PQ与⊙O不相切. (3)①因为PQ的值永远是3,只有PQ⊥l时,点P到直线l的距离最大,此时最大的距离是3分米; ②由①知,在⊙O上存在点P,P'到l的距离为3,此时,OP将不能再向下转动, 如图.OP在绕点O左右摆动过程中所扫过的最大扇形就是P'OP. 连接P'P,交OH于点D, ∵PQ,P'Q'均与l垂直,且PQ=P'Q'=3, ∴四边形PQQ'P'是矩形, ∴OH⊥PP',PD=P'D. 由OP=2,OD=OH-HD=1,得∠DOP=60°. ∴∠POP'=120°. ∴所求最大圆心角的度数为120°.
复制答案
考点分析:
相关试题推荐
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=manfen5.com 满分网,sinA′=manfen5.com 满分网
(1)求此重物在水平方向移动的距离BC;
(2)求此重物在竖直方向移动的距离B′C.(结果保留根号)

manfen5.com 满分网 查看答案
已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.

manfen5.com 满分网 查看答案
为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.
(1)本次抽测的男生有______人,抽测成绩的众数是______
(2)请你将图2的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?
manfen5.com 满分网
查看答案
先化简,再求值:manfen5.com 满分网,其中x=2,y=-1.
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.