如图,直角梯形ABCD中,∠C=∠ADC=90°,AD=10,CD=8,BC=16,E为BC上一点,且CE=6,过点E作EF⊥AD于点F,交对角线BD于点M.动点P从点D出发,沿折线DAB方向以2个单位长度/秒的速度向终点B匀速运动,运动时间为t秒.
(1)求DE的长;
(2)设△PMA的面积为S,求S与t的函数关系式(写出t的取值范围);
(3)当t为何值时,△PMA为等腰三角形?
查看答案
某文化用品商店新进一批毕业纪念册,该纪念册每本进价10元,售价定为每本18元,该商店计划出台一下的促销方案:凡一次购买纪念册6本以上的(不含6本),每多买一本,所购买的每本纪念册的售价就降低0.2元,但是每本纪念册的最低售价不低于13元.
(1)问一次购买该纪念册至少多少本时才能用最低价购买?
(2)求当一次够买该纪念册x本时,商店所获利润W(元)与购买量x(本)之间的函数关系式;
(3)在研讨促销方案过程中,店员发现了一个奇怪的现象:“如果商店一次售出30本纪念册所获得利润,比一次售出26本纪念册所获得利润低.”请你解释其中的道理,并根据其中的道理替该商店修改一下促销方案,使卖得纪念册越多所获利润越大.
查看答案
(1)已知:如图1,△ABC中,分别以AB、AC为一边向△ABC外作正方形ABGE和ACHF,直线AN⊥BC于N,若EP⊥AN于P,FQ⊥AN于Q.判断线段EP、FQ的数量关系,并证明;
(2)如图2,梯形ABCD中,AD∥BC,分别以两腰AB、CD为一边向梯形ABCD外作正方形ABGE和DCHF,线段AD的垂直平分线交线段AD于点M,交BC于点N,若EP⊥MN于P,FQ⊥MN于Q.(1)中结论还成立吗?请说明理由.
查看答案