满分5 > 初中数学试题 >

在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,...

在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C.
(1)如图1,当AB∥CB1时,设A1B1与BC相交于D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1:S2=1:3;
(3)如图3,设AC中点为E,A1B1中点为P,AC=a,连接EP,当θ=______°时,EP长度最大,最大值为______
manfen5.com 满分网
(1)当AB∥CB1时,∠BCB1=∠B=∠B1=30°,则∠A1CD=90°-∠BCB1=60°,∠A1DC=∠BCB1+∠B1=60°,可证:△A1CD是等边三角形; (2)由旋转的性质可证△ACA1∽△BCB1,利用相似三角形的面积比等于相似比的平方求解; (3)连接CP,当E、C、P三点共线时,EP最长,当△ABC旋转到△A1B2C的位置时,此时θ=∠ACA1=120°,EP=EC+CP=a+a=a.根据图形求出此时的旋转角及EP的长. (1)证明:如图,∵AB∥CB1, ∴∠BCB1=∠B=∠B1=30°, ∴∠A1CD=90°-∠BCB1=60°,∠A1DC=∠BCB1+∠B1=60°, ∴△A1CD是等边三角形; (2)证明:由旋转的性质可知AC=CA1,∠ACA1=∠BCB1,BC=CB1, ∴△ACA1∽△BCB1, ∴S1:S2=AC2:BC2=12:2=1:3; (3)【解析】 如图,连接CP,当△ABC旋转到△A1B2C的位置时, 此时θ=∠ACA1=120°,EP=EC+CP=a+a=a. 故答案为:120,a.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

manfen5.com 满分网 查看答案
市教育局决定分别配发给一中8台电脑,二中10台电脑,但现在仅有12台,需在商场购买6台.从市教育局运一台电脑到一中、二中的运费分别是30元和50元,从商场运一台电脑到一中、二中的运费分别是40元和80元.要求总运费不超过840元,问有几种调运方案?指出运费最低的方案.
查看答案
如图,在平面直角坐标系xOy中,一次函数y=-2x的图象与反比例函数y=manfen5.com 满分网的图象的一个交点为A(-1,n).
(1)求反比例函数y=manfen5.com 满分网的解析式;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.

manfen5.com 满分网 查看答案
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)
manfen5.com 满分网
查看答案
“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:manfen5.com 满分网
(1)这次抽查的家长总人数为______
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.