满分5 > 初中数学试题 >

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y...

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式; (2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况: ①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标; ②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标; (3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标. 【解析】 (1)∵抛物线的顶点为Q(2,-1), ∴设抛物线的解析式为y=a(x-2)2-1, 将C(0,3)代入上式,得: 3=a(0-2)2-1,a=1; ∴y=(x-2)2-1,即y=x2-4x+3; (2)分两种情况: ①当点P1为直角顶点时,点P1与点B重合; 令y=0,得x2-4x+3=0,解得x1=1,x2=3; ∵点A在点B的右边, ∴B(1,0),A(3,0); ∴P1(1,0); ②当点A为△AP2D2的直角顶点时; ∵OA=OC,∠AOC=90°, ∴∠OAD2=45°; 当∠D2AP2=90°时,∠OAP2=45°, ∴AO平分∠D2AP2; 又∵P2D2∥y轴, ∴P2D2⊥AO, ∴P2、D2关于x轴对称; 设直线AC的函数关系式为y=kx+b(k≠0). 将A(3,0),C(0,3)代入上式得: , 解得; ∴y=-x+3; 设D2(x,-x+3),P2(x,x2-4x+3), 则有:(-x+3)+(x2-4x+3)=0, 即x2-5x+6=0; 解得x1=2,x2=3(舍去); ∴当x=2时,y=x2-4x+3=22-4×2+3=-1; ∴P2的坐标为P2(2,-1)(即为抛物线顶点). ∴P点坐标为P1(1,0),P2(2,-1); (3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形; 当点P的坐标为P2(2,-1)(即顶点Q)时, 平移直线AP交x轴于点E,交抛物线于F; ∵P(2,-1), ∴可设F(x,1); ∴x2-4x+3=1, 解得x1=2-,x2=2+; ∴符合条件的F点有两个, 即F1(2-,1),F2(2+,1).
复制答案
考点分析:
相关试题推荐
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C.
(1)如图1,当AB∥CB1时,设A1B1与BC相交于D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1:S2=1:3;
(3)如图3,设AC中点为E,A1B1中点为P,AC=a,连接EP,当θ=______°时,EP长度最大,最大值为______
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

manfen5.com 满分网 查看答案
市教育局决定分别配发给一中8台电脑,二中10台电脑,但现在仅有12台,需在商场购买6台.从市教育局运一台电脑到一中、二中的运费分别是30元和50元,从商场运一台电脑到一中、二中的运费分别是40元和80元.要求总运费不超过840元,问有几种调运方案?指出运费最低的方案.
查看答案
如图,在平面直角坐标系xOy中,一次函数y=-2x的图象与反比例函数y=manfen5.com 满分网的图象的一个交点为A(-1,n).
(1)求反比例函数y=manfen5.com 满分网的解析式;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.

manfen5.com 满分网 查看答案
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.