满分5 > 初中数学试题 >

已知直线y=x+4与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交...

已知直线y=manfen5.com 满分网x+4manfen5.com 满分网与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由已知得A点坐标,通过OA,OB长度关系,求得角BAO为60度,即能求得点C坐标,设直线BC代入BC两点即求得. (2)当P点在AO之间运动时,作QH⊥x轴.再求得QH,从而求得三角形APQ的面积. (3)由(2)所求可知,是存在的,写出点的坐标. 【解析】 (1)由已知得A点坐标(-4﹐0),B点坐标(0﹐4﹚, ∵OB=OA, ∴∠BAO=60°, ∵∠ABC=60°, ∴△ABC是等边三角形, ∵OC=OA=4, ∴C点坐标﹙4,0﹚, 设直线BC解析式为y=kx﹢b, , ∴, ∴直线BC的解析式为y=-;(2分) ﹙2﹚当P点在AO之间运动时,作QH⊥x轴. ∵, ∴, ∴QH=t ∴S△APQ=AP•QH=t•t=t2﹙0<t≤4﹚,(2分) 同理可得S△APQ=t•﹙8﹚=-﹙4≤t<8﹚;(2分) (3)存在,如图当Q与B重合时,四边形AMNQ为菱形,此时N坐标为(4,0) 其它类似还有(-4,8)或(-4,-8)或(-4,).(4分)
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=-x2+bx+c经过原点O和点P.已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3).
(1)求c,b并写出抛物线对称轴及y的最大值(用含有n的代数式表示);
(2)求证:抛物线的顶点在函数y=x2的图象上;
(3)若抛物线与直线AD交于点N,求n为何值时,△NPO的面积为1;
(4)若抛物线经过正方形区域ABCD(含边界),请直接______写出n的取值范围.
(参考公式:y=ax2+bx+c(a≠0)的顶点坐标是(-manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s(千米)、s(千米)与行驶时间t(时)的函数图象的一部分.
(1)乙车的速度为______千米/时;
(2)分别求出s、s与t的函数关系式(不必写出t的取值范围);
(3)求出两城之间的路程,及t为何值时两车相遇;
(4)当两车相距300千米时,求t的值.

manfen5.com 满分网 查看答案
如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.
(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.
(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个______结论是否成立,若成立,请给予证明;若不成立,请说明理由.

manfen5.com 满分网 查看答案
如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为manfen5.com 满分网.在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′.
(1)当点O′与点A重合时,求点P的坐标.
(2)设P(t,0),当O′B′与双曲线有交点时,t的取值范围是多少?

manfen5.com 满分网 查看答案
图1为平地上一幢建筑物与铁塔图,图2为其示意图.建筑物AB与铁塔CD都垂直于地面,BD=30m,在A点测得D点的俯角为45°,测得C点的仰角为60°.求铁塔CD的高度.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.