满分5 > 初中数学试题 >

如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边...

如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.
(1)用x表示△ADE的面积;
(2)求出0<x≤5时y与x的函数关系式;
(3)求出5<x<10时y与x的函数关系式;
(4)当x取何值时,y的值最大,最大值是多少?

manfen5.com 满分网
(1)由于DE∥BC,可得出三角形ADE和ABC相似,那么可根据面积比等于相似比的平方用三角形ABC的面积表示出三角形ADE的面积. (2)由于DE在三角形ABC的中位线上方时,重合部分的面积就是三角形ADE的面积,而DE在三角形ABC中位线下方时,重合部分就变成了梯形,因此要先看0<x≤5时,DE的位置,根据BC的长可得出三角形的中位线是5,因此自变量这个范围的取值说明了A′的落点应该在三角形ABC之内,因此y就是(1)中求出的三角形ADE的面积. (3)根据(2)可知5<x<10时,A′的落点在三角形ABC外面,可连接AA1,交DE于H,交BC于F,那么AH就是三角形ADE的高,A′F就是三角形A′DE的高,A′F就是三角形A′MN的高,那么可先求出三角形A′MN的面积,然后用三角形ADE的面积减去三角形A′MN的面积就可得出重合部分的面积.求三角形A′MN的面积时,可参照(1)的方法进行求解. (4)根据(2)(3)两个不同自变量取值范围的函数关系式,分别得出各自的函数最大值以及对应的自变量的值,然后找出最大的y的值即可. 【解析】 (1)∵DE∥BC, ∴∠ADE=∠B,∠AED=∠C, ∴△ADE∽△ABC, ∴, 即S△ADE=x2; (2)∵BC=10, ∴BC边所对的三角形的中位线长为5, ∴当0<x≤5时,y=S△ADE=x2; (3)5<x<10时,点A′落在三角形的外部,其重叠部分为梯形, ∵S△A′DE=S△ADE=x2, ∴DE边上的高AH=A'H=x, 由已知求得AF=5, ∴A′F=AA′-AF=x-5, 由△A′MN∽△A′DE知=()2,S△A′MN=(x-5)2. ∴y=x2-(x-5)2=-x2+10x-25. (4)在函数y=x2中, ∵0<x≤5, ∴当x=5时y最大为:, 在函数y=-x2+10x-25中, 当x=-=时y最大为:, ∵<, ∴当x=时,y最大为:.
复制答案
考点分析:
相关试题推荐
某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号AB
成本(万元/台)200240
售价(万元/台)250300
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价-成本)
查看答案
如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,BF⊥AB交AD的延长线于点F,
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5,求BF的长.

manfen5.com 满分网 查看答案
多年来,许多船只、飞机都在大西洋的一个区域内神秘失踪,这个区域被称为百慕大三角.根据图中标出的百慕大三角的位置及相关数据计算:
(1)∠BAC的度数;(2)百慕大三角的面积.
(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
manfen5.com 满分网
查看答案
某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?
查看答案
已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.