满分5 > 初中数学试题 >

与图有相同对称性的平面图形是( ) A. B. C. D.

与图有相同对称性的平面图形是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由题意可知要求的图形既是中心对称图形又是轴对称图形,根据轴对称图形与中心对称图形的概念求解. 【解析】 观察图形可知已知图形既是中心对称图形又是轴对称图形. A、是轴对称图形,不是中心对称图形,故本选项错误, B、是轴对称图形,不是中心对称图形,故本选项错误, C、是轴对称图形,不是中心对称图形,故本选项错误, D、是轴对称图形,也是中心对称图形,故本选项错误, 故选D.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网的平方根是( )
A.manfen5.com 满分网
B.2
C.±2
D.manfen5.com 满分网
查看答案
已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.
(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当manfen5.com 满分网时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?
manfen5.com 满分网
查看答案
△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=______;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=______
(3)求第10次剪取后,余下的所有小三角形的面积之和.

manfen5.com 满分网 查看答案
如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)
manfen5.com 满分网
查看答案
某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利6元,以同样的栽培条件,若每盆增加1株,平均单株盈利就减少1元,要使每盆的盈利达到20元,每盆应该植多少株?
小强的解法如下:
【解析】
设每盆花苗增加x株时,每盆盈利20元,根据题意,得:
manfen5.com 满分网
解这个方程得:x1=1,x2=2
经检验,x1=1,x2=2都是所列方程的解
答:要使每盆的盈利达到20元,每盆应该植入4或5株.
阅读后完成以下问题:
(1)本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系______
(2)请用一种与小强不相同的方法求解上述问题.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.