满分5 > 初中数学试题 >

已知二次函数y=x2-2mx+4m-8 (1)当x≤2时,函数值y随x的增大而减...

已知二次函数y=x2-2mx+4m-8
(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.
(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.
(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数m的最小值.

manfen5.com 满分网
(1)求出二次函数的对称轴x=m,由于抛物线的开口向上,在对称轴的左边y随x的增大而减小,可以求出m的取值范围. (2)在抛物线内作出正三角形,求出正三角形的边长,然后计算三角形的面积,得到△AMN的面积是m无关的定值. (3)当y=0时,求出抛物线与x轴的两个交点的坐标,然后确定整数m的值. 【解析】 (1)二次函数y=x2-2mx+4m-8的对称轴是:x=m. ∵当x≤2时,函数值y随x的增大而减小, 而x≤2应在对称轴的左边, ∴m≥2. (2)如图:顶点A的坐标为(m,-m2+4m-8) △AMN是抛物线的内接正三角形, MN交对称轴于点B,tan∠AMB=tan60°==, 则AB=BM=BN, 设BM=BN=a,则AB=a, ∴点M的坐标为(m+a,a-m2+4m-8), ∵点M在抛物线上, ∴a-m2+4m-8=(m+a)2-2m(m+a)+4m-8, 整理得:a2-a=0 得:a=(a=0舍去) 所以△AMN是边长为2的正三角形, S△AMN=×2×3=3,与m无关; (3)当y=0时,x2-2mx+4m-8=0, 解得:x=m±=m±, ∵抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数, ∴(m-2)2+4应是完全平方数, ∴m的最小值为:m=2.
复制答案
考点分析:
相关试题推荐
如图1,点C是线段AB上一动点,分别以线段AC、CB为边,在线段AB的同侧作正方形ACDE和等腰直角三角形BCF,∠BCF=90°,连接AF、BD.
(1)猜想线段AF与线段BD的数量关系和位置关系(不用证明).
(2)当点C在线段AB上方时,其它条件不变,如图2,(1)中的结论是否成立?说明你的理由.
(3)在图1的条件下,探究:当点C在线段AB上运动到什么位置时,直线AF垂直平分线段BD?
manfen5.com 满分网
查看答案
如图1,已知矩形ABCD中,manfen5.com 满分网,O是矩形ABCD的中心,过点O作OE⊥AB于E,作OF⊥BC于F,得矩形BEOF.
(1)线段AE与CF的数量关系是______,直线AE与CF的位置关系是______
(2)固定矩形ABCD,将矩形BEOF绕点B顺时针旋转到如图2的位置,连接AE、CF.那么(1)中的结论是否依然成立?请说明理由;
(3)若AB=8,当矩形BEOF旋转至点O在CF上时(如图3),设OE与BC交于点P,求PC的长.
manfen5.com 满分网
查看答案
如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,BE=1,求cosA的值.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.
(1)求证:四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.

manfen5.com 满分网 查看答案
如图,已知⊙O中,半径OC⊥弦AB于点D,∠AOC=60°.
(1)求证:△OAD≌△CBD;
(2)若AB=2,求图中阴影部分的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.