观察图形可知重叠部分的面积即是△DEF的面积减去△MNF的面积.由折叠的性质,可求得∠BDE=∠EDF=45°,由四边形的内角和为360°,求得∠BEF为150°,得到∠CEM为30°,则可证得∠EMC为90°;作△BDE的高,根据45°与60°的三角函数,借助于方程即可求得其高的值,则各三角形的面积可解.
【解析】
过点E作EG⊥AB于G,
∴∠EGB=90°,
∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,AB=BC=AC=3+,
根据题意得:∠BDE=∠FDE,∠F=∠B=60°,
∵DF⊥AB,
∴∠FDB=90°,
∴∠BEF=360°-∠B-∠F-∠BDF=150°,∠BDE=∠FDE=∠FDB=45°
∴∠MEC=180°-∠BEF=30°,
∴∠EMC=180°-∠C-∠EMC=90°,
在Rt△ADN中,AD=1,tan∠A=tan60°==,
∴DN=,
∴S△ADN=AD•DN=×1×=,
在△BDE中,DB=AB-AD=3+-1=2+,
∵∠EDG=45°,
∴∠DEG=45°,
∴DG=EG,
∵tan∠B=tan60°==,
设EG=x,则DG=x,BG=x,
∴x+x=2+,
解得:x=,
∴EG=DG=,
∴S△BDE=BD•EG=×(2+)×=,
∵∠B=∠C=∠F=60°,
∴BE==+1,
∴EC=BC-BE=2,
∵∠BED=∠FED=180°-∠B-∠BDE=75°,
∴∠FNM=∠MEC=30°,
∴∠FMN=∠EMC=90°,
∴EM=EC•cos30°=,
∴FM=EF-EM=BE-EM=1,
∴MN=FM•tan60°=,
∴S四边形MNDE=S△DEF-S△MNF=S△BDE-S△MNF=-×1×=.