满分5 > 初中数学试题 >

如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点. (...

如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABmanfen5.com 满分网C三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等. ②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度; (2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长. 【解析】 (1)①∵t=1秒, ∴BP=CQ=3×1=3厘米, ∵AB=10厘米,点D为AB的中点, ∴BD=5厘米. 又∵PC=BC-BP,BC=8厘米, ∴PC=8-3=5厘米, ∴PC=BD. 又∵AB=AC, ∴∠B=∠C, 在△BPD和△CQP中, ∴△BPD≌△CQP.(SAS) ②∵vP≠vQ,∴BP≠CQ, 又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm, ∴点P,点Q运动的时间秒, ∴厘米/秒; (2)设经过x秒后点P与点Q第一次相遇, 由题意,得x=3x+2×10, 解得. ∴点P共运动了×3=80厘米. ∵80=56+24=2×28+24, ∴点P、点Q在AB边上相遇, ∴经过秒点P与点Q第一次在边AB上相遇.
复制答案
考点分析:
相关试题推荐
国家教委规定“中小学生每天在校体育活动时间不低于1小时”.为此,某地区今年初中毕业生学业考试体育学科分值提高到40分,成绩记入考试总分.某中学为了了解学生体育活动情况,随机调查了720名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,所得的数据制成了的扇形统计图和频数分布直方图.根据图示,解答下列问题:
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的恰好是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”的人数是多少?并补全频数分布直方图;
(3)2010年这个地区初中毕业生约为3.3万人,按此调查,可以估计2010年这个地区初中毕业生中每天锻炼未超过1小时的学生约有多少万人?
(4)请根据以上结论谈谈你的看法.
manfen5.com 满分网
查看答案
已知关于x的二次函数manfen5.com 满分网manfen5.com 满分网,这两个二次函数图象中只有一个图象与x轴交于A,B两个不同的点.
(1)试判断哪个二次函数的图象经过A,B两点;
(2)若A点坐标为(-1,0),试求B点坐标.
查看答案
如图,在梯形ABCD中,AB∥CD,∠D=90°,CD=4,∠ACB=∠D,tan∠B=manfen5.com 满分网,求梯形ABCD的面积.

manfen5.com 满分网 查看答案
如图,△ABC是正方形网格中的格点三角形(顶点在格上),请在正方形网格上按下列要求画一个格点三角形与△ABC相似,并填空:
(1)在图甲中画△A1B1C1,使得△A1B1C1的周长是△ABC的周长的2倍,则manfen5.com 满分网=______
(2)在图乙中画△A2B2C2,使得△A2B2C2的面积是△ABC的面积的2倍,则manfen5.com 满分网=______
查看答案
一种长方形餐桌的四周可以坐6人用餐(带阴影的小长方形表示1个人的位置)、现把n张这样的餐桌按如图方式拼接起来.
(1)问四周可以坐多少人用餐?(用n的代数式表示)
(2)若有28人用餐,至少需要多少张这样的餐桌?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.