满分5 > 初中数学试题 >

如图,已知抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0),抛物线的顶...

如图,已知抛物线y=a(x-1)2+3manfen5.com 满分网(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

manfen5.com 满分网
(1)将A的坐标代入抛物线y=a(x-1)2+3(a≠0)可得a的值,即可得到抛物线的解析式; (2)易得D的坐标,过D作DN⊥OB于N;进而可得DN、AN、AD的长,根据平行四边形,直角梯形,等腰梯形的性质,用t将其中的关系表示出来,并求解可得答案; (3)根据(2)的结论,易得△OCB是等边三角形,可得BQ、PE关于t的关系式,将四边形的面积用t表示出来,进而分析可得最小值及此时t的值,进而可求得PQ的长. 【解析】 (1)∵抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0), ∴0=9a+3, ∴a=-(1分) ∴二次函数的解析式为:y=-x2+x+;(3分) (2)①∵D为抛物线的顶点, ∴D(1,3), 过D作DN⊥OB于N,则DN=3,AN=3, ∴AD==6, ∴∠DAO=60°.(4分) ∵OM∥AD, ①当AD=OP时,四边形DAOP是平行四边形, ∴OP=6, ∴t=6(s).(5分) ②当DP⊥OM时,四边形DAOP是直角梯形, 过O作OH⊥AD于H,AO=2,则AH=1(如果没求出∠DAO=60°可由Rt△OHA∽Rt△DNA(求AH=1) ∴OP=DH=5,t=5(s)(6分) ③当PD=OA时,四边形DAOP是等腰梯形, 易证:△AOH≌△DPP′, ∴AH=CP, ∴OP=AD-2AH=6-2=4, ∴t=4(s)综上所述:当t=6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形;(7分) (3)由(2)及已知,∠COB=60°,OC=OB,△OCB是等边三角形则OB=OC=AD=6,OP=t,BQ=2t, ∴OQ=6-2t(0<t<3)过P作PE⊥OQ于E, 则PE=t(8分) ∴SBCPQ=×6×3×(6-2t)×t =(t-)2+(9分) 当t=时,四边形BCPQ的面积最小值为.(10分) ∴此时OQ=3,OP=,OE=; ∴QE=3-=,PE=, ∴PQ=.(11分)
复制答案
考点分析:
相关试题推荐
问题背景:
在△ABC中,AB、BC、AC三边的长分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上______
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积;
探索创新:
(3)若△ABC三边的长分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积.
manfen5.com 满分网
查看答案
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
manfen5.com 满分网
查看答案
甲、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,快车才开始行驶.已知快车的速度是120km/h,以快车开始行驶计时,设时间为x(h),两车之间的距离为y(km),图中的折线是y与x之间的函数关系的部分图象.
根据函数图象解决以下问题:
(1)慢车的速度是______,点B的坐标是______
(2)求线段AB所表示的y与x之间的函数关系式;
(3)试在图中补全点B以后的图象.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.

manfen5.com 满分网 查看答案
随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2008年底全市汽车拥有量为15万辆,而截止到2010年底,全市的汽车拥有量已达21.6万辆.
(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;
(2)为保护城市环境,缓解汽车拥堵状况,从2011年初起,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过23.196万辆;另据估计,该市从2011年起每年报废的汽车数量是上年底汽车拥有量的10%.假定在这种情况下每年新增汽车数量相同,请你计算出该市每年新增汽车数多不能超过多少万辆.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.