满分5 > 初中数学试题 >

如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿C...

如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.

manfen5.com 满分网
(1)可通过构建直角三角形来求【解析】 过A作AE⊥CD,垂足为E.那么可在直角三角形AED中根据两底的差和∠D的度数来求出AD的长. (也可通过作辅助线将梯形分成平行四边形和等边三角形两部分来求解.) (2)可通过求△PDQ的面积与x的函数关系式来得出△PDQ的最大值.由于P、Q速度相同,因此CP=QD=x,那么可用x表示出PD,而△PQD中,PD边上的高=QD•sin60°,由此可根据三角形的面积公式求出S△PQD与x之间的函数关系式,可根据函数的性质求出S的最大值以及对应的x的值. (3)假设存在这样的M点,那么DM就是PQ的垂直平分线,可得出QD=PD、PM=AM,然后证PM=PD即可.根据(2)中得出PD、DQ的表达式,可求出x=,即P是CD的中点,不难得出△QPD为等边三角形,因此∠QPD=∠C=60°,因此PQ∥CM,即∠DMC=90°,在直角三角形DMC中,P为斜边CD的中点,因此PM=PD,即可得出四边形PDQM是菱形.那么此时根据BM=BC-CM可求出BM的长. 【解析】 (1)解法一:如图1 过A作AE⊥CD,垂足为E. 依题意,DE==. 在Rt△ADE中,AD==. 解法二:如图2 过点A作AE∥BC交CD于点E,则CE=AB=4. ∠AED=∠C=60度. 又∵∠D=∠C=60°, ∴△AED是等边三角形. ∴AD=DE=9-4=5. (2)如图1 ∵CP=x,h为PD边上的高,依题意, △PDQ的面积S可表示为: S=PD•h=(9-x)•x•sin60° =(9x-x2)=-(x-)2+. 由题意知0≤x≤5. 当x=时(满足0≤x≤5),S最大值=. (3)如图4 存在满足条件的点M,则PD必须等于DQ. 于是9-x=x,x=. 此时,点P、Q的位置如图4所示,△PDQ恰为等边三角形. 过点D作DO⊥PQ于点O,延长DO交BC于点M,连接PM、QM,则DM垂直平分PQ, ∴MP=MQ. 易知∠1=∠C. ∴PQ∥BC. 又∵DO⊥PQ, ∴MC⊥MD ∴MP=CD=PD 即MP=PD=DQ=QM ∴四边形PDQM是菱形 所以存在满足条件的点M,且BM=BC-MC=5-=.
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.
(1)求证:MN是⊙O的切线;
(2)若∠BAC=120°,AB=2,求图中阴影部分的面积.

manfen5.com 满分网 查看答案
如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.
(1)求证:△ABE∽△ADF;
(2)若AG=AH,求证:四边形ABCD是菱形.

manfen5.com 满分网 查看答案
今年3月,我省大部分地区遭受特大旱灾,某中学师生自愿捐款,已知第一天捐款5200元,第二天捐款6500元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么该中学两天共参加捐款的人数是多少?人均捐款多少元?
查看答案
某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:
manfen5.com 满分网
(1)该校学生报名总人数有多少人?
(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?
(3)频数分布直方图补充完整.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.