如图,已知二次函数y=ax
2+2x+3的图象与x轴交于点A、点B,与y轴交于点C,其顶点为D,tan∠OBC=1,
(1)求点B的坐标;
(2)求a的值和二次函数y=ax
2+2x+3的顶点坐标;
(3)求直线DC的解析式;
(4)在该二次函数的图象上是否存在点P(点P与点B、C不重合),使得△PBC是以BC为一条直角边的直角三角形?若存在,求出点P的坐标,若不存在,请你说明理由.
考点分析:
相关试题推荐
如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为______,数量关系为______.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.
查看答案
利达经销店为某工厂代销一种建筑材料.当每吨售价为200元时,月销售量为20吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加5吨,综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用80元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨材料售价是180元时,计算此时的月销售量;
(2)求出y与x的二次函数关系式(不要求写出x的取值范围);
(3)每吨材料售价定为多少元时,该经销店获得的月利润最大.
查看答案
为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:
组别 | 次数x | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 | a |
第4组 | 140≤x<160 | 18 |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)表中的a=______;
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第______组;
(4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或八年级同学提一条合理化建议:______.
查看答案
北京市与石家庄市两地相距300km,甲车在北京市,乙车在石家庄市,两车同时出发,相向而行,在A地相遇.为节约费用(两车相遇并换货后,均需按原路返回出发地).两车换货后,甲车立即按原路返回北京市,而乙车又停留1小时后按原路返回石家庄市.设每车在行驶过程中速度保持不变,两车间的距离y(km)与时间x(h)的函数关系如图所示,根据所提供的信息,回答下列问题:
(1)①两车从出发开始到A地相遇用了______h;
②两车在A地换货用了______h;
③甲车的速度是______km/h,乙车的速度是______km/h;
④在图中y轴上的小括号内应填的数字是______.
(2)从两车开始同时出发到4.6h时,甲车与乙车相距多少千米?
查看答案
如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.
(1)求证:△ABE∽△ADF;
(2)若AG=AH,求证:四边形ABCD是菱形.
查看答案