已知二次函数y=ax
2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m>2)与x轴交于点D.
(1)求二次函数的解析式;
(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,四边形OABC是面积为4的正方形,函数
(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数
(x>0)的图象交于点E、F,求线段EF所在直线的解析式.
查看答案
一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个.若从中任意摸出一个球,这个球是白球的概率为
.
(1)求口袋中红球的个数;
(2)把口袋中的球搅匀后摸出一个球,放回搅匀再摸出第二个球,求摸到的两个球是一红一白的概率.(请结合树状图或列表加以解答)
查看答案
如图,某剧组在东海拍摄广泛风光片,拍摄基地位于A处,在其正南方向15海里处一小岛B,在B的正东方向20海里处有一小岛C,小岛D位于AC上,且距小岛A10海里.
(1)求∠A的度数(精确到1°)和点D到BC的距离;
(2)摄制组甲从A处乘甲船出发,沿A⇒B⇒C的方向匀速航行,摄制组乙从D处乘乙船出发,沿南偏西方向匀速直线航行,已知甲船的速度是乙船速度的2倍,若两船同时出发并且在B、C间的F处相遇,问相遇时乙船航行了多少海里?(结果精确到0.1海里)
查看答案
如图,ABCD是正方形,G是BC上的一点,DE⊥AG于E,BF⊥AG于F.
(1)求证:△ABF≌△DAE;
(2)求证:DE=EF+FB.
查看答案
如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO并延长交AC于点G,AB=4,AG=2.
(1)求∠A的度数;
(2)求⊙O的半径.
查看答案