满分5 > 初中数学试题 >

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD...

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=manfen5.com 满分网时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
manfen5.com 满分网
(1)根据O、E的坐标即可确定抛物线的解析式,进而求出其顶点坐标,即可得出所求的结论; (2)①当t=时,OA=AP=,由此可求出P点的坐标,将其代入抛物线的解析式中进行验证即可; ②此题要分成两种情况讨论: 一、PN=0时,即t=0或t=3时,以P、N、C、D为顶点的多边形是△PCD,以CD为底AD长为高即可求出其面积; 二、PN≠0时,即0<t<3时,以P、N、C、D为顶点的多边形是梯形PNCD,根据抛物线的解析式可表示出N点的纵坐标,从而得出PN的长,根据梯形的面积公式即可求出此时S、t的函数关系式,令S=5,可得到关于t的方程,若方程有解,根据求得的t值即可确定N点的坐标,若方程无解,则说明以P、N、C、D为顶点的多边形的面积不可能为5. 【解析】 (1)因抛物线y=-x2+bx+c经过坐标原点O(0,0)和点E(4,0), 故可得c=0,b=4, 所以抛物线的解析式为y=-x2+4x(1分), 由y=-x2+4x,y=-(x-2)2+4, 得当x=2时,该抛物线的最大值是4;(2分) (2)①点P不在直线ME上; 已知M点的坐标为(2,4),E点的坐标为(4,0), 设直线ME的关系式为y=kx+a; 于是得,, 解得:, 所以直线ME的关系式为y=-2x+8;(3分) 由已知条件易得,当t=时,OA=AP=,P(,)(4分) ∵P点的坐标不满足直线ME的关系式y=-2x+8; ∴当t=时,点P不在直线ME上;(5分) ②以P、N、C、D为顶点的多边形面积可能为5 ∵点A在x轴的非负半轴上,且N在抛物线上, ∴OA=AP=t; ∴点P、N的坐标分别为(t,t)、(t,-t2+4t)(6分) ∴AN=-t2+4t(0≤t≤3), ∴AN-AP=(-t2+4t)-t=-t2+3t=t(3-t)≥0, ∴PN=-t2+3t(7分) (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD, ∴S=DC•AD=×3×2=3; (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形 ∵PN∥CD,AD⊥CD, ∴S=(CD+PN)•AD=[3+(-t2+3t)]×2=-t2+3t+3(8分) 当-t2+3t+3=5时,解得t=1、2(9分) 而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5 综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5, 当t=1时,此时N点的坐标(1,3)(10分) 当t=2时,此时N点的坐标(2,4).(11分) 说明:(ⅱ)中的关系式,当t=0和t=3时也适合,(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分)
复制答案
考点分析:
相关试题推荐
[提出问题]:已知矩形的面积为1,当该矩形的长为多少时,它的周长最小?最小值是多少?
[建立数学模型]:设该矩形的长为x,周长为y,则y与x的函数关系式为y=x+manfen5.com 满分网(x>0).
[探索研究]:我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;
xmanfen5.com 满分网manfen5.com 满分网manfen5.com 满分网1234
y
②观察图象,写出当自变量x取何值时,函数y=x+manfen5.com 满分网(x>0)有最小值;
③我们在课堂上求二次函数最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+manfen5.com 满分网(x>0)的最小值.

manfen5.com 满分网 查看答案
我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30度.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

manfen5.com 满分网 查看答案
如图,一次函数y=k1x+b与反比例函数manfen5.com 满分网(x>0)的图象交于A(2,manfen5.com 满分网),B(a,3)两点.
(1)求一次函数和反比例函数的关系式;
(2)直接写出manfen5.com 满分网时x的取值范围.

manfen5.com 满分网 查看答案
某工厂计划为灾区学校生产甲、乙两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套甲型桌椅(一桌两椅)需木料0.5m3,一套乙型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3
(1)有多少种生产方案?
(2)现要把生产的全部桌椅运往灾区,已知每套甲型桌椅的生产成本为100元,运费2元;每套乙型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产甲型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)
查看答案
如图所示,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AF.
求证:
(1)AF∥BE;
(2)△ACP∽△FCA;
(3)CP=AE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.