如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:
①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;
②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;
③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,抛物线y=ax
2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,
(1)求该抛物线的解析式.
(2)求证:△OAB是等腰直角三角形.
(3)将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此抛物线上.
(4)在抛物线上是否存在这样的点M,使得四边形ABOM成直角梯形?若存在,请求出点M坐标及该直角梯形的面积;若不存在,请说明理由.
查看答案
“青海玉树”大地震后,某公司向灾区献爱心,捐了四月份的全部销售利润.已知该公司四月份共销售A,B,C三种型号的器材,每种型号器材的销售量不少于20台.售出的三种器材的进货款总计218万元,已知四月份其他各项支付(其他各项支出=人员工资+杂项开支)为18.6万元,A,B,C三种器材的进价和售价如表所示:
型号 | A | B | C |
进价(万元/台) | 2.1 | 2.3 | 2.2 |
售价(万元/台) | 2.7 | 3.5 | 2.6 |
其中人员工资y
1(万元)和杂项支出y
2(万元)分别于销售量x(台)成一次函数关系,如图.
(1)求y
1与y
2的函数关系式;
(2)求四月份该公司的销售量;
(3)设该公司四月份售出A种型号器材t台,四月份总销售量利润为W(万元).求W与t的函数关系式:(销售利润=销售额-进货款-其他各项支出)
(4)求该公司向灾区捐款金额的最大值.
查看答案
已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD;
(3)设AD=2,AE=1,求⊙O直径的长.
查看答案
为了解某校“振兴阅读工程”的开展情况,教育部分对该校初中生的阅读情况进行了随机问卷调查,绘制了如图表:
初中生喜爱的文学作品种类调查统计表
种类 | 小说 | 散文 | 传记 | 科普 | 军事 | 诗歌 | 其他 |
人数 | 72 | 8 | 21 | 19 | 15 | 2 | 13 |
根据上述图表提供的信息,解答下列问题:
(1)喜爱小说的人数占被调查人数的百分比是多少;初中生每天阅读时间的中位数在哪个时间段内.
(2)将写读后感、笔记积累、画圈点读三种方式称为有记忆阅读,请估计该样现有的2000名初中生中,有记忆阅读的人数约是多少?
查看答案
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取
=1.732,结果精确到1m)
查看答案