满分5 > 初中数学试题 >

如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10. (...

如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:
①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;
②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;
③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
manfen5.com 满分网
(1)求面积要先求梯形的高,可根据两底的差和CD的长,在直角三角形中用勾股定理进行求解,得出高后即可求出梯形的面积. (2)①PQ平分梯形的周长,那么AD+DQ+AP=BC+CQ+BP,已知了AD,BC的长,可以用t来表示出AP,BP,CQ,QD的长,那么可根据上面的等量关系求出t的值. ②本题要分三种情况进行讨论: 一,当P在AB上时,即0<t≤8,如果两三角形相似,那么∠C=∠ADP,或∠C=∠APD,那么在△ADP中根据∠C的正切值,求出t的值. 二,当P在AD上时,即8<t≤10,由于P,A,D在一条直线上,因此构不成三角形. 三,当P在CD上时,即10<t≤12,由于∠ADC是个钝角,因此△ADP是个钝角三角形因此不可能和直角△CQE相似. 综合三种情况即可得出符合条件的t的值. (3)和(2)相同也要分三种情况进行讨论: 一,当P在AB上时,即0<t≤8,等腰△PDQ以DQ为腰,因此DQ=DP或DQ=PQ,可以通过构建直角三角形来表示出DP,PQ的长,然后根据得出的等量关系来求t的值. 二,当P在AD上时,即8<t≤10,由于BA+AD=CD=10,因此DP=DQ=10-t,因此DP,DQ恒相等. 三,当P在CD上时,即10<t≤12,情况同二. 综合三种情况可得出等腰三角形以DQ为腰时,t的取值. 【解析】 (1)过D作DH∥AB交BC于H点, ∵AD∥BH,DH∥AB, ∴四边形ABHD是平行四边形. ∴DH=AB=8;BH=AD=2. ∴CH=8-2=6. ∵CD=10, ∴DH2+CH2=CD2∴∠DHC=90°. ∠B=∠DHC=90°. ∴梯形ABCD是直角梯形. ∴SABCD=(AD+BC)AB=×(2+8)×8=40. (2)①∵BP=CQ=t, ∴AP=8-t,DQ=10-t, ∵AP+AD+DQ=PB+BC+CQ, ∴8-t+2+10-t=t+8+t. ∴t=3<8. ∴当t=3秒时,PQ将梯形ABCD周长平分. ②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C ∴tan∠ADP=tan∠C== ∴=,∴t= 若△PAD∽△CEQ则∠APD=∠C ∴tan∠APD=tan∠C==,∴= ∴t= 第二种情况:8<t≤10,P、A、D三点不能组成三角形; 第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似; ∴t=或t=时,△PAD与△CQE相似. ③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H. ∵AP=8-t,AD=2, ∴PD==. ∵CE=t,QE=t, ∴QH=BE=8-t,BH=QE=t. ∴PH=t-t=t. ∴PQ==,DQ=10-t. Ⅰ:DQ=DP,10-t=, 解得t=8秒. Ⅱ:DQ=PQ,10-t=, 化简得:3t2-52t+180=0 解得:t=,t=>8(不合题意舍去) ∴t= 第二种情况:8≤t≤10时.DP=DQ=10-t. ∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立. 第三种情况:10<t≤12时.DP=DQ=t-10. ∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立. 综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,
(1)求该抛物线的解析式.
(2)求证:△OAB是等腰直角三角形.
(3)将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此抛物线上.
(4)在抛物线上是否存在这样的点M,使得四边形ABOM成直角梯形?若存在,请求出点M坐标及该直角梯形的面积;若不存在,请说明理由.

manfen5.com 满分网 查看答案
“青海玉树”大地震后,某公司向灾区献爱心,捐了四月份的全部销售利润.已知该公司四月份共销售A,B,C三种型号的器材,每种型号器材的销售量不少于20台.售出的三种器材的进货款总计218万元,已知四月份其他各项支付(其他各项支出=人员工资+杂项开支)为18.6万元,A,B,C三种器材的进价和售价如表所示:
型号ABC
进价(万元/台)2.12.32.2
售价(万元/台)2.73.52.6
其中人员工资y1(万元)和杂项支出y2(万元)分别于销售量x(台)成一次函数关系,如图.
(1)求y1与y2的函数关系式;
(2)求四月份该公司的销售量;
(3)设该公司四月份售出A种型号器材t台,四月份总销售量利润为W(万元).求W与t的函数关系式:(销售利润=销售额-进货款-其他各项支出)
(4)求该公司向灾区捐款金额的最大值.

manfen5.com 满分网 查看答案
已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD;
(3)设AD=2,AE=1,求⊙O直径的长.

manfen5.com 满分网 查看答案
为了解某校“振兴阅读工程”的开展情况,教育部分对该校初中生的阅读情况进行了随机问卷调查,绘制了如图表:
初中生喜爱的文学作品种类调查统计表
种类小说散文传记科普军事诗歌其他
人数728211915213
manfen5.com 满分网
根据上述图表提供的信息,解答下列问题:
(1)喜爱小说的人数占被调查人数的百分比是多少;初中生每天阅读时间的中位数在哪个时间段内.
(2)将写读后感、笔记积累、画圈点读三种方式称为有记忆阅读,请估计该样现有的2000名初中生中,有记忆阅读的人数约是多少?
查看答案
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取manfen5.com 满分网=1.732,结果精确到1m)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.