直线y=-x-3经过点C(1,m),并与坐标轴交于A、B两点,过B、C两点的抛物线y=x
2+bx+c与x轴的负半轴交于D点,
(1)求点C的坐标及抛物线的解析式;
(2)抛物线y=x
2+bx+c的对称轴为直线MN,直线MN与x轴相交于点F,直线MN上有一动点P,过P作直线PE⊥AB,垂足为E,直线PE与x轴相交于点H
①当P点在直线MN上移动时,是否存在这样的P点,使以A、P、H为顶点的三角形与△FBC相似?若存在,请求出P点的坐标;若不存在,请说明理由;
②若⊙I始终过A、P、E三点,当P点在MN上运动时,圆心I在______上运动.(先作选择,再说明理由)
A.一个圆 B.一个反比例函数图象 C.一条直线 D.一条抛物线
考点分析:
相关试题推荐
如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.
查看答案
某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装第1周的售价为50元/件,并且每周涨价2元/件,从第6周开始,保持60元/件的稳定价格销售,直到第11周结束,该童装不再销售.
(1)求销售价格y(元)与周次x之间的函数关系式;
(2)若该品牌的童装每周进货一次,并于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为
,那么该品牌童装在第几周售出后,每件获得的利润最大?并求每件的最大利润.
查看答案
如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC交于点E,且BE平分∠ABC,
(1)求证:AC是⊙O的切线;
(2)若AD=2,AE=
,求⊙O的半径.
查看答案
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).
(1)以O为位似中心,将△OAB缩小,使得缩小后的△OA
1B
1与△OAB的相似比为1:2,画出△OA
1B
1.(所画△OA
1B
1与△OAB在原点两侧).
(2)画出△OAB绕点O逆时针旋转90°后的△OA
2B
2,求旋转过程中点A经过的路径的长(结果保留π)
查看答案
有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.
(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);
(2)试求抽取的两张卡片结果能组成分式的概率.
查看答案