满分5 > 初中数学试题 >

如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁...

如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=manfen5.com 满分网
(1)求点M离地面AC的高度BM(单位:厘米);
(2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘
manfen5.com 满分网米).
(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα==,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值; (2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α,又因为sinα==,所以可得出FN和FM之间的数量关系,即FN=FM,再根据MN=11-3=8,利用勾股定理即可求出FM=10个单位. 【解析】 过M作与AC平行的直线,与OA、FC分别相交于H、N. (1)在Rt△OHM中,∠OHM=90°,OM=5, HM=OM×sinα=3, 所以OH=4, MB=HA=5-4=1, 1×5=5cm. 所以铁环钩离地面的高度为5cm; (2)∵铁环钩与铁环相切, ∴∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α, ∴=sinα=, ∴FN=FM, 在Rt△FMN中,∠FNM=90°,MN=BC=AC-AB=11-3=8. ∵FM2=FN2+MN2, 即FM2=(FM)2+82, 解得:FM=10, 10×5=50(cm). ∴铁环钩的长度FM为50cm.
复制答案
考点分析:
相关试题推荐
如图(1),两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1. 固定△ABC不动,分别按如下操作画出图形并进行解答:
(1)图(2)中,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断地变化,但它的面积不变化,请求出其面积.
(2)图(3)中,当D点移到AB的中点时,请你探究四边形CDBF的形状,并说明理由.
manfen5.com 满分网
查看答案
为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.
(1)本次抽测的男生有______人,抽测成绩的众数是______
(2)请你将图2的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?
manfen5.com 满分网
查看答案
解方程:manfen5.com 满分网
查看答案
如图,正方体的棱长为3,点M,N分别在CD,HE上,CM=manfen5.com 满分网DM,HN=2NE,HC与NM的延长线交于点P,则tan∠NPH的值为   
manfen5.com 满分网 查看答案
如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为    cm2
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.