满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM...

如图,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分线,CE⊥AN,垂足是E,连接DE交AC于F.
①求证:四边形ADCE为矩形;
②求证:DF∥AB,DF=manfen5.com 满分网
③当△ABC满足什么条件时,四边形ADCE为正方形,简述你的理由.

manfen5.com 满分网
(1)先根据AB=AC,AD⊥BC垂足是D,得AD平分∠BAC,然后根据AE是△ABC的外角平分线,可求出AN∥BC,故∠DAE=∠ADC=∠AEC=90°,所以四边形ADCE为矩形; (2)根据四边形ADCE是矩形,可知F是AC的中点,由AB=AC,AD平分∠BAC可知D是BC的中点,故DF是△ABC的中位线,即DF∥AB,DF=; (3)根据矩形的性质可知当△ABC是等腰直角三角形时,则∠5=∠2=45°,利用等腰三角形的性质定理可知对应边AD=CD.再运用临边相等的矩形是正方形.问题得证. 证明:(1)∵AB=AC,AD⊥BC垂足是D, ∴AD平分∠BAC,∠B=∠5, ∴∠1=∠2, ∵AE是△ABC的外角平分线, ∴∠3=∠4, ∵∠1+∠2+∠3+∠4=180°, ∴∠2+∠3=90°, 即∠DAE=90°, 又∵AD⊥BC, ∴∠ADC=90°, 又∵CE⊥AE, ∴∠AEC=90°, ∴四边形ADCE是矩形. (2)∵四边形ADCE是矩形, ∴AF=CF=AC, ∵AB=AC,AD平分∠BAC, ∴BD=CD=BC, ∴DF是△ABC的中位线, 即DF∥AB,DF=. (3)当△ABC是等腰直角三角形时,四边形ADCE为正方形. ∵在Rt△ABC中,AD平分∠BAC ∴∠5=∠2=∠3=45°, ∴AD=CD, 又∵四边形ADCE是矩形, ∴矩形ADCE为正方形.
复制答案
考点分析:
相关试题推荐
某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其它”在扇形图中所占的圆心角是多少度?
(3)补全频数分布折线图.
manfen5.com 满分网
查看答案
如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.
(1)用直尺画出该圆弧所在圆的圆心M的位置;
(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C的抛物线上;
(3)在(2)的条件下,求证:直线CD是⊙M的切线.

manfen5.com 满分网 查看答案
如图所示,将一副三角尺摆放在一起,连接AD,求∠ADB的余切值.

manfen5.com 满分网 查看答案
如图,一束平行光线从教室窗户射入,光线与地面所成的∠AMC=30°,在教室地面的影长MN=manfen5.com 满分网米,若窗户的下檐到教室地面的距离BC=1米,求窗户上檐到教室地面的距离AC的长.

manfen5.com 满分网 查看答案
如图,P为反比例函数y=manfen5.com 满分网图象上一点,过点P分别向x轴,y轴引垂线,垂足分别为M、N,直线y=-x+1与PM、PN分别交于点E、F,与x轴、y轴分别交于A、B,则AF•BE=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.